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Abstract.  Conceptual graphs allow for powerful and computationally afford-
able representation of the semantic contents of natural language texts. We pro-
pose a method of comparison (approximate matching) of conceptual graphs. 
The method takes into account synonymy and subtype/supertype relationships 
between the concepts and relations used in the conceptual graphs, thus allowing 
for greater flexibility of approximate matching. The method also allows the user 
to choose the desirable aspect of similarity in the cases when the two graphs can 
be generalized in different ways. The algorithm and examples of its application 
are presented. The results are potentially useful in a range of tasks requiring ap-
proximate semantic or another structural matching – among them, information 
retrieval and text mining. 

1.  Introduction 

In many application areas of text processing – e.g., in information retrieval and text 
mining – simple and shallow representations of the texts are commonly used. On one 
hand, such representations are easily extracted from the texts and easily analyzed, but 
on the other hand, they restrict the precision and the diversity of the results. 

Recently, in all text-oriented applications there is a tendency to use richer represen-
tations than just keywords, i.e., representations with more types of textual elements. 
Under this circumstance, it is necessary to have the appropriate methods for the com-
parison of two texts in any of these new representations. 

In this paper, we consider the representation of the texts by conceptual graphs 
[9,10] and focus on the design of a method for comparison of two conceptual graphs. 
This is a continuation of the research reported in [15]. 

Most methods for comparison of conceptual graphs come from information re-
trieval research. Some of them are restricted to the problem of determining if a graph, 
say, the query graph, is completely contained in the other one, say, the document 
graph [2,4]; in this case neither description nor measure of their similarity is obtained. 
Some other, more general methods, do measure the similarity between two conceptual 
graphs, but they typically describe this similarity as the set of all their common ele-
ments allowing duplicated information [3,6,7]. Yet other methods are focused on 
question answering [12]; these methods allow a flexible matching of the graphs, but 
they do not compute any similarity measure. 

                                                        
* Work done under partial support of CONACyT, CGEPI-IPN, and SNI, Mexico.  

PDF  PS www.gelbukh.com 

M. Montes y Gómez, A. Gelbukh, A. López López, Ricardo Baeza-Yates. Flexible Comparison of Concep-
tual Graphs. In: Mayr, H.C., Lazansky, J., Quirchmayr, G., Vogel, P. (Eds.), Proc. DEXA-2001, 12th Inter-
national Conference and Workshop on Database and Expert Systems Applications. Lecture Notes in Com-
puter Science, N 2113, Springer-Verlag, 2001, pp. 102-111. 

 



The method we propose is general but flexible. First, it allows measuring the simi-
larity between two conceptual graphs as well as constructing a precise description of 
this similarity. In other words, this method describes the similarity between two con-
ceptual graphs both quantitatively and qualitatively. Second, it uses domain knowl-
edge – a thesaurus and a set of is-a hierarchies – all along the comparison process, 
which allows considering non-exact similarities. Third, it allows visualizing the simi-
larities between two conceptual graphs from different points of view and selecting the 
most interesting one according to the user’s interests. 

The paper is organized as follows. The main notions concerning conceptual graphs 
are introduced in section 2. Our method for comparison of two conceptual graphs is 
described in section 3, matching of conceptual graphs being discussed in subsection 
3.1 and the similarity measure in subsection 3.2. An illustrative example is shown in 
section 4, and finally, some conclusions are discussed in the section 5. 

2.  Conceptual Graphs 

This section introduces well-known notions and facts about conceptual graphs. 
A conceptual graph is a finite oriented connected bipartite graph [9,10]. The two 

different kinds of nodes of this bipartite graph are concepts and relations. 
Concepts represent entities, actions, and attributes. Concept nodes have two attrib-

utes: type and referent. Type indicates the class of the element represented by the 
concept. Referent indicates the specific instance of the class referred to by the node. 
Referents may be generic or individual. 

Relations show the inter-relationships among the concept nodes. Relation nodes 
also have two attributes: valence and type. Valence indicates the number of the neigh-
bor concepts of the relation, while the type expresses the semantic role of each one.  

Figure 1 shows a simple conceptual graph. This graph represents the phrase “Tom 
is chasing a brown mouse”. It has three concepts and three relations. The concept 
[cat: Tom] is an individual concept of the type cat (a specific cat Tom), while the 
concepts [chase] and [mouse] are generic concepts. All relations in this graph are 
binary. For instance, the relation (attr) for attribute indicates that the mouse has 
brown color. The other two relations stand for agent and patient of the action [chase]. 

Building and manipulating conceptual graphs is mainly based on six canonical 
rules [9]. Two of these rules are the generalization rules: unrestrict and detach. 

Unrestrict rule generalizes a conceptual graph by unrestricting one of it concepts 
either by type or referent. Unrestriction by type replaces the type label of the concept 
with some its supertype; unrestriction by referent substitutes individual referents by 
generic ones. 

Detach rule splits a concept node into two different nodes having the same attrib-
utes (type and referent) and distributes the relations of the original node between the 
two resulting nodes. Often this operation leads to separating the graph into two un-
connected parts. 

cat: Tom chase mouseAgnt Ptnt brownAttr

Figure 1.  A simple conceptual graph 



A conceptual graph v derivable from the graph u by applying a sequence of gener-
alization rules is called a generalization of the graph u; this is denoted as u ≤ v. In this 
case there exists a mapping π: v → u with the following properties (πv is a subgraph 
of u called a projection of v in u; see Figure 2):1 

• For each concept c in v, πc is a concept in πv such that type(πc) ≤ type(c). If c is 
an individual concept, then referent(πc) = referent(c). 

• For each relation node r in v, πr is a relation node in πv such that type(πr) = 
type(r). If the i-th arc of r is linked to a concept c in v then the i-th arc of πr must 
be linked to πc in πv. 

The mapping π is not necessarily one-to-one, i.e., two different concepts or rela-
tions can have the same projections (x1 ≠ x2 and πx1 = πx2, such situation results from 
application of detach rule). In addition, it is not necessarily unique, i.e., a conceptual 
graph v can have two different projections π and π´ in u, π´v ≠ πv. 

If u1, u2, and v are conceptual graphs such that u1 ≤ v and u2 ≤ v, then v is called a 
common generalization of u1 and u2. A conceptual graph v is called a maximal com-
mon generalization of u1 and u2 if and only if there is no other common generalization 
v´ of u1 and u2 (i.e., u1 ≤ v´ and u2 ≤ v´) such that v´ ≤ v. 

3.  Comparison of Conceptual Graphs 

The procedure we propose for the comparison of two conceptual graphs is summa-
rized in Figure 3. It consists of two main stages. First, the two conceptual graphs are 
matched and their common elements are identified. Second, their similarity measure 
is computed as a relative size of their common elements. This measure is a value be-
tween 0 and 1, 0 indicating no similarity between the two graphs and 1 indicating that 
the two conceptual graphs are equal or semantically equivalent. 

The two stages use domain knowledge and consider the user interests. Basically, 
the domain knowledge is described as a thesaurus and as a set of user-oriented is-a 
hierarchies. The thesaurus allows considering the similarity between semantically 
related concepts, not necessarily equal, while the is-a hierarchies allow determining 
similarities at different levels of generalization. 

                                                        
1 Here, the functions type(c) and referent(c) return the type and referent of the concept c, re-

spectively; the function type(r) returns the type of the relation r. By type(a) ≤ type(b) we de-
note the fact that type(b) is a supertype of type(a). 
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ππ v  
Figure 2.  Projection mapping π: v → u 

(the highlighted area is the projection of v in u). 



3.1  Matching Conceptual Graphs 

Matching of two conceptual graphs allows finding all their common elements, i.e., all 
their common generalizations. Since the projection is not necessarily one-to-one and 
unique, some of these common generalizations may express redundant (duplicated) 
information. In order to construct a precise description of the similarity of the two 
conceptual graphs (e.g. G1 and G2), it is necessary to identify the sets of compatible 
common generalizations. We call such sets overlaps and define them as follows. 

Definition 1. A set of common generalizations { }ngggO ,,, 21 …=  is called com-

patible if and only if there exist projection maps2 { }nπππ ,,, 21 …  such that the corre-

sponding projections in G1 and G2 do not intersect, i.e.: 
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Definition 2. A set of common generalizations { }ngggO ,,, 21 …=  is called maximal 
if and only if there does not exist any common generalization g of G1 and G2 such that 
either of the conditions holds: 

1. { }ggggO n ,,,, 21 …=′  is compatible, 

2. 
iggi ≤∃ : , 

igg ≠ , and { }nii gggggO ,,,,,, 111 …… +−=′  is compatible. 

(i.e., O cannot be expanded and no element of O can be specialized while preserving 
the compatibility of O.) 

Definition 3. A set { }ngggO ,,, 21 …=  of common generalizations of two concep-

tual graphs G1 and G2 is called overlap if and only if it is compatible and maximal. 

Obviously, each overlap expresses completely and precisely the similarity between 
two conceptual graphs. Therefore, the different overlaps may indicate different and 
independent ways of visualizing and interpreting their similarity. 

Let us consider the algorithm to find the overlaps. Given two conceptual graphs G1 

and G2, the goal is to find all their overlaps. Our algorithm works in two stages. 
At the first stage, all similarities (correspondences) between the conceptual graphs 

are found, i.e., a kind of the product graph is constructed [6].  The product graph P 
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Figure 3.  Comparison of conceptual graphs 



expresses the Cartesian product of the nodes and relations of the conceptual graphs, 
but only considers those pairs with non-empty common generalizations. The algo-
rithm is as follows: 

1    For each concept ci of G1 

2       For each concept cj of G2 

3            P ← the common generalization of ci and cj. 
4    For each relation ri of G1 

5        For each relation ri of G2 

6            P ← the common generalization of ri and rj. 

At the second stage, all maximal sets of compatible elements are detected, i.e., all 
overlaps are constructed. The algorithm we use in this stage is an adaptation of a well-
known algorithm for the detection of all frequent item sets in a large database [1].   

Initially, we consider that each concept of the product graph is a possible overlap. 
At each subsequent step, we start with the overlaps found in the previous step. We use 
these overlaps as the seed set for generating new large overlaps. At the end of the 
step, the overlaps of the previous step that were used to construct the new overlaps are 
deleted because they are not maximal overlaps and the new overlaps are the seed for 
the next step. This process continues until no new large enough overlaps are found. 
Finally, the relations of the product graph are inserted into the corresponding over-
laps. This algorithm is as follows: 

1   Overlaps1 = {all the concepts of P} 
2   For (k = 2; Overlapsk-1 = ∅; k++) 
3         Overlapsk   ← overlap_gen (Overlapsk-1) 
4         Overlapsk-1 ← Overlapsk-1 – {elements covered by Overlapsk} 
5   MaxOverlaps = ∪k kOverlaps  

6   For each relation r of P 
7       For each overlap Oi of MaxOverlaps 
8           If the neighbor concepts of r are in the overlap Oi 
9               O ← r 

The overlap_gen function takes as argument Overlapsk-1, the set of all large (k-1) 
overlaps and returns Overlapsk, the set of all large k-overlaps.  Each k-overlap is con-
structed by joining two compatible (k-1) overlaps. This function is defined as follows: 
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with the exception of the case k = 2 where 

{ }concepts scompatible are  and ,,| 12 XXOverlapsXXXXOverlaps ′∈′′∪= . 

In the next section we give an illustration of matching of two simple conceptual 
graphs; see Figure 4. 

It is well-known [5,6] that matching conceptual graphs is an NP-complete problem. 
Thus our algorithm has exponential complexity by the number of common nodes of 
the two graphs. This does not imply, however, any serious limitations for its practical 
application for our purposes, since the graphs we compare represent the results of a 



shallow parsing of a single sentence and thus are commonly small and have few 
nodes in common. Since our algorithm is an adaptation of the algorithm called 
APRIORI [1] that was reported to be very fast, ours is also fast (which was confirmed 
in our experiments); in general, algorithms of exponential complexity are used quite 
frequently in data mining. For a discussion of why exponential complexity does not 
necessarily present any practical problems, see also [14]. 

3.2  Similarity Measure 

Given two conceptual graphs G1 and G2 and one of their overlaps, O, we define their 
similarity s as a combination of two values: their conceptual similarity sc and their 
relational similarity sr. 

The conceptual similarity sc depends on the common concepts of G1 and G2. It in-
dicates how similar the entities, actions, and attributes mentioned in both conceptual 
graphs are. We calculate it using an expression analogous to the well-known Dice 
coefficient [8]:3 
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Here ∪O  is the union of all graphs in O, i.e., the set of all their nodes and arcs; 

the function weight (c) gives the relative importance of the concept c, and the function 
β ( cG1
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π ) expresses the level of generalization of the common concept ∪Oc ∈  
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π . The function weight(c) is different 
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attributes: 
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where wE, wV, and wA are positive constants that express the relative importance of the 
entities, actions, and attributes respectively. Their values are user-specified. In the 
future, a less arbitrary mechanism for assigning weights can be developed. 

The function β ( cG1
π , cG2

π ) can be interpreted as a measure of the semantic simi-

larity between the concepts cG1
π  and cG2

π . Currently we calculate it as follows:4 
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basis for the similarity measure we proposed. 
4 In this definition, the condition type( cG1

π ) = type( cG2
π ) is also satisfied when type( cG1

π ) 

and type( cG2
π ) are synonyms, which is defined by the thesaurus. 



In the first condition, the concepts cG1
π  and cG2

π  are the same and thus 

β ( cG1
π , cG2

π ) = 1. 

In the second condition, the concepts cG1
π  and cG2

π  refer to different individuals 

of the same type, i.e., different instances of the same class. In this case, 
( ) ( )1,

21
+= depthdepthcc GG ππβ , where depth indicates the number of levels of the is-

a hierarchy. Using this value, the similarity between two concepts having the same 
type but different referents is always greater that the similarity between any two con-
cepts with different types. 

In the third condition, the concepts cG1
π  and cG2

π  have different types, i.e., refer 

to elements of different classes. In this case, we define β ( cG1
π , cG2

π ) as the seman-

tic similarity between type( cG1
π ) and type( cG2

π ) in the is-a hierarchy. We calculate 

it using a similar expression to one proposed in [11]. In this third option of our for-
mula, di indicates the distance – number of nodes – from the type i to the root of the 
hierarchy. 

The relational similarity sr expresses how similar the relations among the common 
concepts in the conceptual graphs G1 and G2 are. In other words, the relational simi-
larity indicates how similar the neighbors of the overlap in both original graphs are 
(see more details in [13]). We define the immediate neighbor of the overlap O in a 
conceptual graph Gi, NO(Gi), as the set of all the relations connected to the common 
concepts in the graph Gi: 

( ) ( ) ( ) { }GcrrcNcNGN G
Oc

GGiO ii
in    toconnected is |  where, ==

∈
∪ π . 

With this, we calculate the relational similarity sr using the following expression – 
also analogous to the Dice coefficient: 
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Here weightG(r) indicates the relative importance of the conceptual relation r in the 
conceptual graph G.5 This value is calculated by the neighbor of the relation r. This 
kind of assignment guarantees the homogeneity between the concept and the relation 
weights. Hence, we compute weightG(r) as: 

( ) ( )
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Now that we have defined the two components of the similarity measure, sc and sr, 
we combine them into a cumulative measure s. First, the combination should be 
roughly multiplicative, for the cumulative measure to be proportional to each of the 
two components. This would give the formula rc sss ×= . However, we note that the 
relational similarity has a secondary importance, because its existence depends on the 
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(see the definition 3.1). 



existence of some common concept nodes and because even if no common relations 
exist between the common concepts of the two graphs, there exists some level of 
similarity between them. Thus, while the cumulative similarity measure is propor-
tional to sc, it still should not be zero when sr = 0. So we smooth the effect of sr using 
the expression: 

( )rc sbass ×+×=  
With this definition, if no relational similarity exists between the two graphs (sr = 

0) then the general similarity only depends on the value of the conceptual similarity. 
In this situation, the general similarity is a fraction of the conceptual similarity, where 
the coefficient a indicates the value of this fraction. 

The coefficients a and b reflect user-specified balance (0 < a, b < 1, a + b = 1). The 
coefficient a indicates the importance of the part of the similarity exclusively depend-
ent on the common concepts and the coefficient b expresses the importance of the part 
of the similarity related with the connection of these common concepts. The user’s 
choice of a (and thus b) allows adjusting the similarity measure to the different appli-
cations and user interests. For instance, when a > b, the conceptual similarities are 
emphasized, while when b > a, stresses structural similarities. 

4.  An illustrative example 

Our method for comparison of two conceptual graphs is very flexible. On one hand, it 
describes qualitatively and quantitatively the similarity between the two graphs. On 
the other hand, it considers the user interests all along the comparison process. 

To illustrate this flexibility, we compare here two simple conceptual graphs. The 
first one represents the phrase “Gore criticizes Bush” and the second one the phrase 
“Bush criticizes Gore”.6 The figure 4 shows the matching of these two graphs. Notice 
that their similarity can be described in two different ways, i.e., by two different and 
independent overlaps. The overlap O1 indicates that in both graphs “a candidate criti-
cizes another candidate”, while the overlap O2 indicates that both graphs talk about 
Bush, Gore, and an action of criticizing. 

The selection of the best overlap, i.e., the most appropriate description of the simi-
larity, depends on the application and the user interests. These two parameters are 
modeled by the similarity measure. Table 1 shows the results for the comparison of 
these two conceptual graphs. Each result corresponds to a different way of evaluating 
and visualizing the similarity of these graphs. For instance, the first case emphasizes 
the structural similarity, the second one the conceptual similarity, and the third one 
focuses on the entities. In each case, the best overlap and the longer similarity meas-
ure are highlighted. 

5.  Conclusions 

In order to start using more complete representations of texts than just keywords in 
the various applications of text processing, one of the main prerequisites is to have an 
appropriate method for the comparison of such new representations. 

                                                        
6 Bush and Gore were candidates at U.S. president elections in 2001. 



We considered re-
presentation of the 
texts by conceptual 
graphs and proposed 
a method for com-
parison of any pair of 
conceptual graphs. 
This method works in 
two main stages: 
matching conceptual 
graphs and measur-
ing their similarity. 
Matching is mainly 
based on the gener-
alization rules of 
conceptual graph 
theory. Similarity 
measure is based on 
the idea of the Dice 
coefficient but it also 
incorporates some 
new characteristics 
derived from the 
conceptual graph 
structure, for in-
stance, the combina-
tion of two comple-
mentary sources of similarity: conceptual and relational similarity. 

Our method has two interesting characteristics. First, it uses domain knowledge, 
and second, it allows a direct influence of the user. 

The domain knowledge is expressed in the form of a thesaurus and a set of small 
(shallow) is-a hierarchies, both customized by a specific user. The thesaurus allows 
considering the similarity between semantically related concepts, not necessarily 
equal, while the is-a hierarchies allow determining the similarities at different levels 
of generalization.  

 

candidate : Gore criticize candidate : Bush G 1 : 
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candidate : Bush criticize candidate : Gore Agnt Ptnt 

candidate : Gore criticize candidate  Bush G 1 : 

G 2 : 
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candidate : Bush criticize candidate : Gore Agnt Ptnt 
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(b)  

Figure 4.  Flexible matching of two conceptual graphs 

Table 1.  The flexibility of the similarity measure 

Conditions Overlap sc sr s 
     

[candidate]←(agt)←[criticize]→(pnt)→[candidate] 0.86 1 0.86 a = 0.1, b = 0.9 
wE = wV = wA = 1 

[candidate:Bush]  [criticize] [candidate:Gore] 1.00 0 0.10 
     

[candidate]←(agt)←[criticize]→(pnt)→[candidate] 0.86 1 0.86 a = 0.9, b = 0.1 
wE = wV = wA = 1 [candidate:Bush]  [criticize]  [candidate:Gore] 1.00 0 0.90 

     

[candidate]←(agt)←[criticize]→(pnt)→[candidate] 0.84 1 0.84 a = 0.5, b = 0.5 
wE = 2 

wV = wA = 1 [candidate:Bush]  [criticize]  [candidate:Gore] 1.00 0 0.50 



The flexibility of the method comes from the user-defined parameters. These allow 
analyzing the similarity of the two conceptual graphs from different points of view 
and also selecting the best interpretation in accordance with the user interests. 

Because of this flexibility, our method can be used in different application areas of 
text processing, for instance, in information retrieval, textual case-based reasoning, 
and text mining. Currently, we are designing a method for the conceptual clustering of 
conceptual graphs based on these ideas and an information retrieval system where the 
non-topical information is represented by conceptual graphs. 
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