
A Fast Scheduling Algorithm in AND-OR Graphs

GEORGE M. ADELSON-VELSKY
Department of Mathematics and Computer Science,

Bar-Ilan University, Ramat Gan, ISRAEL
velsky@macs.biu.ac.il

ALEXANDER GELBUKH

Center for Computing Research,
National Polytechnic Institute, Mexico City, MEXICO

gelbukh@cic.ipn.mx, www.gelbukh.com

EUGENE LEVNER

Department of Computer Science,
Holon Institute of Technology, Holon, ISRAEL

levner@hait.ac.il

Abstract. We present a polynomial-time algorithm for scheduling tasks in AND-OR graphs.

Given the total number p of arcs and the number n of nodes, the complexity of the algorithm
is O(np), which is superior to the complexity of previously known algorithms.

 Key-Words: AND-OR graphs, scheduling, routing, polynomial-time algorithms.

1 Introduction

In this paper, we consider a task scheduling problem

in weighted directed AND-OR graphs in which arcs
are identified with tasks while nodes represent their

starting and finishing endpoints. A starting point of a

task is depicted by an AND-node if its execution can
be started after all its preceding tasks have been

solved; on the other hand, a starting point of a task is

depicted by an OR-node if it can be started as soon

as just one of its preceding tasks is solved. The time
needed to execute a task is represented by an arc

length. The problem that emerges is to implement all

the tasks in the graph in minimum time.
 Scheduling problems in AND-OR graphs have

many real-world applications. Among many others,

we can mention the work by De Mello and Sander-

son [5] who have applied the scheduling problems
for the planning of robotic assembling systems; Gil-

lies and Liu [7] and Adelson-Velsky and Levner [1]

employed AND-OR graphs for real-time scheduling
of tasks in computer communication systems. Along

with various technological applications, the schedul-

ing problems in AND-OR graphs arise in mathe-
matical analysis of extremal problems in context-free

grammars [8], hypergraphs [4], and games [10].

 The problem considered generalizes the classical

shortest-path and critical-path problems in graphs.

 While vast literature is devoted to the shortest-

path problem and the critical-path problem in stan-
dard graphs (see, e.g., [3], and the numerous refer-

ences therein), not much have been done for effi-

ciently solving the path-finding problems in AND-
OR graphs. A special case in which arc lengths are

strictly positive has been elegantly solved by Dinic

[6]. Another special case - in which AND-OR graphs
are bipartite, arc lengths are non-negative and zero-

length cycles are allowed - has been independently

investigated by Adelson-Velsky and Levner [1, 2],

and Mohring et al. [8], who have proposed different
combinatorial algorithms of the same complexity,

O(pp'), where p is the total number of arcs, and p'

the number of arcs entering AND-nodes.
In this paper, we extend the polynomial-time al-

gorithms in [1, 2, 8] to the general (= not-bipartite)

AND-OR graphs and improve their complexity.
Given the total number n of nodes, the time com-

plexity of the new algorithm is O(np), which is su-

perior to the complexity of the previous algorithms.

The paper is organized as follows: In Section 2
we define the problem. Section 3 presents a new

polynomial-time algorithm. Section 4 analyzes its

properties. Section 5 concludes the paper.

George M. Adelson-Velsky, Alexander F. Gelbukh, and Eugene Levner. A fast

scheduling algorithm in AND-OR graphs. Topics in Applied and Theoretical

Mathematics and Computer Science, WSEAS Press, 2001, pp. 170–175.

2 Problem Formulation

The input to the scheduling problem under consid-

eration is <G, s,τ>, where G = (V, E) is a directed
graph with nodes of both types, V is the node-set,

V = n, E is the arc-set, E = p, τ = τ(vi, vj) is an arc
length function, and s is a selected node, called the
start, whose occurrence time is given: t(s) = t0.

 We assume that V=A∪O∪{s}, A being the set of
AND-nodes and O the set of OR-nodes. The problem

is to find the earliest starting times t(vj), for all vj∈V,
satisfying the following conditions:

 t(s) = t0, (1)

 t(vj)≥)(max
ji vPv∈ (t(vi)+τ(vi,vj)) if vj∈A, (2)

 t(vj) ≥)(min
ji vPv ∈

(t(vi) + τ(vi,vj)) if vj∈O, (3)

 t(vj) ≥ 0, for all vj. (4)

 Here P(v) denotes the set of nodes - immediate

predecessors to v. Without the loss of generality, we

assume that P(v) is non-empty for any node v, v≠s.

(Otherwise, we would have several start nodes
which could be assembled onto one super-start). The

problem above is called Problem P. The problem

turns into the critical path problem if the set O is
empty, and the shortest path problem if A is empty.

 We start our considerations with the following

graph transformations which permit to present the

constraints (4) in graph form, and which do not vio-
late the problem size order:

(a) if our graph has an OR-node u whose sons vj are

OR-nodes, then a new AND-node, u, is added

with τ(u, u) = 0, while arcs (u, vj) are replaced by

(u, vj), with τ(u, vj) = τ(u, vj), and

(b) we add arcs (s, vj) of zero length, leading from the
start s to all AND-nodes vj in G.

Due to the preliminary transformations above, we

may assume that any OR-node in G has a preceding
AND-node; in particular, the G does not contain zero-

length cycles consisting of OR-nodes only. Notice

that in contrast to the graph model considered in [1,

2], in this paper the arcs entering OR-nodes are al-
lowed to be of non-zero length.

 DEFINITIONS. A set of values {t(vj)}, j = 1,…,

n, satisfying inequalities (1)-(4) is called a feasible

solution to Problem P. The feasible solution provid-
ing the minimum values t(vj) for all vj, among all

feasible solutions, is called optimal, or earliest, start-

ing times, and is denoted by {t*(vj)}.

 Denote the graph obtained after the transforma-
tions by Γ, and the problem of finding the optimal

occurrence times {t*(vj)} in Γ subject to (1)-(4) by

Π. Obviously, the problems P and Π are equivalent.

3 New Polynomial-Time Algorithm

 A new algorithm is based on the previous algo-

rithm suggested by the first and third authors of this

paper in [1,2], differing from the latter in the follow-

ing two aspects: (i) it uses another labeling proce-
dure which permits us to improve the algorithm

complexity; (ii) it uses a more sophisticated graph

reduction procedure which permits to treat general
AND-OR graphs rather than the bipartite graphs

only. The labeling procedure is made bi-colored in

order to simplify the presentation of the algorithm.

 The basic scheme of the algorithm is the following.
At each iteration, the algorithm finds a node with the

smallest starting time (at this point, the algorithm is

similar to the classic Dijkstra algorithm). However, in
contrast to Dijkstra's [3], Knuth's [8] or Dinic's [6]

algorithms, our algorithm is not greedy: it first dis-

covers and labels all nodes with not-minimal current
starting times, and only after that it reveals that the

remaining (= not-yet-labeled) nodes gain minimum-
time labels. At termination, the algorithm either pro-

vides the minimal starting time t*(vj) for all nodes, or

announces that Problem Π has no feasible solution.

 For every node v∈V, the algorithm maintains a

time label t(v) and a status St(v)∈{uncolored, red,
black}. All nodes start out uncolored and later be-

come red or black. Initially, t(v) = ∞ if v≠s; t(s) = t0.

 At each iteration, the underlying graph is reduced
to a smaller one. Let Γh denote the graph derived at

the end of the hth iteration (h = 1, 2,…). The main

idea behind the labeling procedure is to guarantee
that in the Γh all nodes labeled red will have the time

labels (= the occurrence times) greater than the ear-

liest occurrence time in Γh; the nodes labeled black

will have the same time labels t(v) equal to the earli-
est occurrence time among the nodes of Γh.

 Each iteration uses four sub-procedures:

Node_Painting, Node_Selection, Node_Sorting, and

Graph_Reduction. Consider a cuurnt iteration, say h.
 First, Node_Sorting sorts all nodes vi in F(s) in

non-decreasing order of their weights τ(s,vi).
 Next, we use Node_Painting, consisting of three

steps, S1-S3. The first step, S1, performs the initial

labeling of the nodes, after which two other steps are
repeatedly carried out one after another: S2, S3, S2,

S3, etc. At each step, yet uncolored nodes are

painted red, until at some instant no uncolored node

can be labeled red, neither at Step S2 nor at Step S3.
 Let F(s) denote the set of all nodes v which are

the heads of the arcs leaving s.

 Step S1. Paint red each uncolored AND-node vj
in the graph Γh which is the head of a positive-length

arc (vi,vj) whose tail vi is not the start node s.

 Step S2. Paint red each uncolored OR-node vj in
Γh such that all immediate predecessors to vj have

been labeled red during the previous steps of the

current iteration.

 Step S3. Assign the status St(v) = {red} to each
uncolored AND-node vj, such that it has at least one

immediate predecessor labeled red during the previ-

ous steps of the current iteration.
 Steps S2 and S3 iterate as long as some uncolored

nodes can be painted red. When, at some instant no

uncolored node can be labeled red neither at Step S2

nor at Step S3, we say that the first phase of
Node_Painting is finished and the algorithm starts its

second phase as will be described below.

 Two cases are possible at the termination of the
first phase:

 Case C1. All nodes are painted red. This means

that the initial graph has a cycle of positive length,
and moreover, the time labels of certain AND-

node(s) in the cycle will be infinitely large, i.e., un-

bounded from below. Thus, in this case the problem

has no feasible solution.
 Case C2. Some of the nodes (or, possibly, all of

them) cannot be painted red.

 Two sub-cases are possible:
 Case C2.1. All the unpainted nodes cannot be

reached from start s through directed paths in G

(clearly, this might happen for OR-nodes only). Then
any time label assigned to such OR-nodes will be

feasible, and, hence, we will assign the minimally

possible time label, t(s) = t0, to all of them.

 Case C2.2. There are unpainted nodes reachable

from start s by directed paths in G. Then choose,

among them, the node v** in F(s) with the maximal

"weight": τ** = τ(s,v**) = τ(s,vi) = maxi∈F(s)τ(s,vi),

paint it red, and paint not-yet-painted nodes, by re-
peatedly using Steps S2 and S3, starting from the

chosen node v**. Repeat Steps S2 and S3 as long as

some uncolored nodes can be painted red. When, at
some instant no uncolored node can be labeled red

neither at Step S2 nor at Step S3, we will say that the

second phase (but not yet the Node_Painting at the

considered iteratopm h) of the algorithm is finished.
 At each iteration, the further behavior of the algo-

rithm depends on whether all or not all nodes in Γh

are painted red.
 If there are nodes not painted red at the termina-

tion of the second stage, then, again, we choose

among them, the node v** in F(s) with the maximal

"weight": τ** = τ(s,v**) = τ(s,vi) = maxi∈F(s)τ(s,vi),

paint it red, and paint red not-yet-painted nodes, by
repeatedly using Steps S2 and S3, starting from the

newly-chosen node v**. Repeat Steps S2 and S3 as

long as some uncolored nodes can be painted red.
The second phase is repeated until, at some instant

all nodes in F(s) are labeled red.

 The Node_Painting at the current iteration h is

finished. Then, Node_Selection selects the last cho-
sen node, and denote it as v***. It has the minimum

time in Γh and may be deleted from the graph, being

saved in a special file, FINAL = {v, t(v)}. (This file
will be retrieved at the last iteration of the algo-

rithm). The deleted node is painted black (this color-

ing is done in order to simplify the further proofs).
 Before the next iteration starts, Graph_Re-

construction is applied: Any arc in Γh having a black

head is deleted. The time labels t(v) for the sons of

v*** are defined as follows:

t(v) := max(t(v), t0 + τ(s, v***)+τ(vi, vj))
if v is an AND-node;

t(v) := min(t(v), t0 + τ(s, v***)+ τ(vi, vj)) if v is an
OR-node.

 The arc (v***, v) (with a black tail and a red

head) it is replaced by a new arc, (s, v), of length
t(v).

 The v*** may be either an AND-node or an OR-

node. Thus, at each iteration either AND-node or

OR-node from the initial graph G is deleted. The
number of nodes in F(s) changes dynamically from

iteration to iteration, (at some iterations it may in-

crease), but can never exceed the total number of

nodes, n.

 At each iteration, the number of nodes (and arcs) in
the graph Γh decreases by at least one. Then the next

iteration, consisting of the four sub-procedures de-

scribed above is applied to the obtained graph Γh+1.

Observe that this construction does not mimic the
structure of Dijkstra’s shortest path algorithm.

 Theorems.
1. Let Γh be a graph obtained at the h-th iteration of
the algorithm. If a feasible solution to Π in graph Γh

exists, then the earliest occurrence time of any black

node is equal to τ* = τ(s,v1) = mini∈F(s)τ(s, vi).
2. If the optimal solution to Problem Π exists, then

the earliest occurrence times of the red nodes are

larger than τ* = mini∈F(s)τ(s, vi), where F(s) is the set

of all heads of the arcs leaving node s in Γh.
3. If the optimal solution {t*(v)} to Problem Π exists,

and τ* = mini∈F(s)τ(s, vi) at the beginning of an itera-
tion of the algorithm, then, after performing the steps

of each iteration, all the nodes with t*(v) > τ* will be
labeled red.

4. The complexity of the algorithm is O(np).
 The proofs immediately follow from the algo-

rithm description above.

 The algorithm runs faster if at some stage the re-
duced graph becomes acyclic, or if all arc lengths in

the reduced graph become positive.

Our algorithm is a modification of the algorithm

in [1, 2] that solves the above problem (1)-(4). Simi-
lar to the algorithm in [1], the new algorithm oper-

ates with two main procedures, Node_ Labeling and

Graph_Reduction. Node_Labeling - as in [1,2] - has
the complexity O(p). However, after each run of

Node_Labeling at least one node of G may be re-

moved, so the total number of runs of the internal
cycle can reach n, where n is the number of nodes in

G; this is a point of departure from the algorithm in

[1, 2], where O(p) time is required in the internal

cycle in the worst case. We improved the complexity
to O(np).

Acknowledgements

The work was done under partial support of SNI and

CONACyT, Mexico, for the second author.

References

1. Adelson-Velsky, G.M., and E. Levner (1999a).
Routing information flows in networks: A gen-

eralization of Dijkstra’s algorithm, Proceedings

of the International Conference “Distribu-ted
Computer Communication Networks”, Novem-

ber 9-13, 1999, Tel-Aviv University, Israel, 1-4.

2. Adelson-Velsky, G.M., and E. Levner (1999b).

Finding extremal paths in AND-OR graphs.

Technical report, Holon Academic Institute of
Technology, Holon, Israel, 35 pp.

3. Ahuja, R.K., T.L. Magnanti, J.B. Orlin (1993).
Network Flows. Theory, Algorithms and Appli-

cations, Prentice Hall, Englewood Cliffs.

4. Ausiello, G., A. D’Atri, D. Sacca (1983), Graph

algorithms for functional dependency manipula-

tion, Journal of ACM, 30, 752-766.

5. De Mello, L.S.H., and A.C. Sanderson (1990).

AND/OR graph representation of assembly
plans, IEEE Transactions on Robotics and

Automation, vol. 6, no.2, 188-199.

6. Dinic, E.A. (1990). The fastest algorithm for the

PERT problems with AND- and OR-nodes. Pro-

ceedings of the Workshop on Combinatorial Op-
timization, Waterloo, University of Waterloo

Press, Waterloo, 185-187.

7. Dijkstra, E.W. (1959). A note on two problems

in connexion with graphs, Numerische Mathe-

matik, 1, 269-271.

8. Gillies, D. and J. Liu (1995), Scheduling tasks
with AND/OR precedence constraints, SIAM

Journal on Computing 24(4), 787-810.

9. Knuth, D. (1977), A generalization of Dijkstra’s

algorithm, Information Processing Letters, 6,1-5.

10. Mohring, R.H, M. Skutella and F. Stork (2000),

Scheduling with AND/OR Precedence Con

straints, Technical Report No. 689/2000, Tech-
nische Universitat Berlin, August 2000, 26 pp.

11. Zwick, U., and M. Patterson (1996), The com-
plexity of mean payoff games on graphs, Theo-

retical Computer Science, 158, 343-359.

