
Elitistic Evolution: a Novel Micro-Population
Approach for global optimization problems

Francisco Viveros-Jiménez
Universidad del Istmo Campus Ixtepec

Cd. Ixtepec, Oaxaca, México
Email: pacovj@hotmail.com

Efren Mezura-Montes
Laboratorio Nacional de

Informática Avanzada (LANIA A.C.)
Xalapa, Veracruz, México
Email: emezura@lania.mx

Alexander Gelbukh
Centro de Investigación en Computación

Instituto Politécnico Nacional
D.F. México

Email: gelbukh@gelbukh.com

Abstract—Micro-population Evolutionary Algorithms (µ-EAs)
are useful tools for optimization purposes. They can be used
as optimizers for unconstrained, constraint and multi-objective
problems. µ-EAs distinctive feature is the usage of very small
populations. A novel µ-EA named Elitistic Evolution (EEv) is pro-
posed in this paper. EEv is designed to solve high-dimensionality
problems (N ≥ 30) without using complex mechanisms e.g.
Hessian or covariance matrix. It is a simple heuristic that does not
require a careful fine-tunning of its parameters. EEv principal
features are: adaptive behavior and elitism. Its evolutionary
operators: mutation, crossover and replacement, have the ability
to search either locally (near a current point) or globally (on
a distant point). This ability is controlled by a single adaptive
parameter. EEv is tested on a set of well-known optimization
problems and its performance is compared with respect to state-
of-the-art algorithms, such as Differential Evolution, µ-PSO and
Restart CMA-ES.

Index Terms—Optimization methods, Micro-population algo-
rithms, Evolutionary Computation.

I. INTRODUCTION

Due to the necessity of a simple, fast and robust optimizer,
several approaches have been proposed in the recent years.
Evolutionary Algorithms (EAs) are efficient heuristics that
accomplish this necessity [1]. EAs find solutions by emulating
natural evolution. In this way, EAs evolve a population of
candidate solutions in order to improve them. It is a well-
known fact that EAs usually utilize large populations. Some
researchers have implemented EAs which can work with
small populations [7], [8]. They were called Micro-population
Evolutionary Algorithms (μ-EAs).

A μ-EA is an EA which evolves a small population (P <
10). From the specialized literature, two representative μ-EAs
are (1) the micro-Genetic Algorithm (μ-GA) [7] and (2) the
micro-Particle Swarm Optimization (μ-PSO) [9]. μ-EAs can
be used as optimizers for unconstrained [7], constrained [9]
and multi-objective optimization problems[10]. Aditionally,
μ-EAs can be used either as Local Improvement Processes
(LIPs) to create efficient memetic algorithms [11] or as part
of cooperative evolutionary algorithms [13].

In this work we propose a novel but simple μ-EA to solve
unconstrained optimization problems, called Elitistic Evolu-
tion (EEv). EEv was created to solve high-dimensionality
problems (N ≥ 30) without using additional mechanisms to
guide the search, such as a Hessian or a covariance matrix. The

variation operators used in EEv are mutation and crossover.
Furthermore, a replacement process takes place. As a com-
bined effect, EEv has the ability to search either locally (near
a current point) or globally (on a distant point). This behavior
is controlled by a single adaptive parameter. Thus, EEv will
conduct the search according to the current situation of the
optimization process. These features make EEv competitive on
solving global optimization problems. We test EEv in order to
analyze its robustness, speed and average performance.

The contents of this paper are organized as follows: First,
we describe EEv and the proposed evolutionary operators in
Section II. After that, Section III contains the experimental
design and obtained by each compared technique. Finally,
section IV concludes this paper.

II. ELITISTIC EVOLUTION

The main features of EEv are:

1) Two variaton operators: mutation and crossover
2) A replacement mechanishm which sorts the individuals

(solutions) based on fitness, in such a way that the first
solution is the fittest.

3) Two user-defined parameters: population size (P ∈
IN, P ∈ [3, 10]) and the initial (base) value for a set
of stepsizes (B ∈ IR, B ∈ [0.0, 1.0]).

4) A hill-climbing-like mutation operator.

EEv has the ability to search either locally (near a current
point) or globally (on a distant point) according to the suc-
cess of the optimization process. This ability is implemented
through an adaptive parameter (termed C ∈ IN, C ∈ [1, P])
and a set of special evolutionary operators. The C value
indicates the number of individuals to be affected by a local
search process. In this way, lower C values promote global
exploration while higher C values promote local exploitation.
Table I illustrates the effects of C parameter over the search.

Figure 1 describes the EEv optimization process. EEv
approach optimizes through evaluations, instead of optimizing
through populations as in regular EAs. To avoid premature
convergence EEv maintains diversity through the selection of
P − C random offspring in the replacement stage.

2009 Eighth Mexican International Conference on Artificial Intelligence

978-0-7695-3933-1/09 $26.00 © 2009 IEEE

DOI 10.1109/MICAI.2009.30

15

Set X0
i , i = 1, . . . , P as a random population;1

Evaluate each X0
i ;2

C=1;3

Set adaptive step sizes �bj = B, j = 1, . . . , N ;4

for g=1 To G do5

Each solution Xg
i , i = 1 . . . , P will generate a mutant6

O
′g
i , i = 1, . . . , P by mutation (see Figure 2);

Use the three-individual crossover operator to7

generate P offspring Og
i (see Figure 7). The parents

will be selected from Xg
i ∪ O

′g
i ;

Evaluate each offspring Og
i , i = 1, . . . , P ;8

The new population Xg+1
i , i = 1, . . . , P consists on9

the C best individuals from Xg
i ∪ Og

i and P − C
individuals randomly selected from Og

i ;
C and �b values are updated (see Figures 3 and 9);10

Fig. 1. Algorithm for EEv. G is the maximum generation number.

TABLE I
IMPLICATIONS OF C PARAMETER.

Stage C = 1 C = P
Mutation Global search Local Search

Dynamic stepsizes Adaptive stepsizes
A few significant Many slight

changes to variables changes to variables
Crossover Random parent selection Elite as main parent

Restart Total restart No restart

A. Mutation operator

The mutation operator used in EEv is based on the mutation
technique proposed in [4]. This operator provides a balance
between exploration and exploitation. Figure 4 illustrates the
general idea of the operator: In Figure 4 (left) exploration
is promoted because a few solutions use small stepsizes
while the remaining ones use large stepsizes (see equation
1). The opposite occurs in Figure 4 (right) where all solutions
use small stepsizes to promote local exploitation. Figure 2
describes the mutation operator, which performs a random
number of alterations in some variables on each individual Xg

i .
The search space can be sampled by moving in all dimensions
of the search space as seen in Figure 5.

By analyzing Equation 1 more in depth, this is the mecha-
nism to bias that mutation operator to use the �b step sizes for
the first C individuals (exploitation). The adaptive stepsizes
of all dimensions are stored in �b. �b values change depending
on the previous success of the search, determined by the
comparison of the best fitness values of the current and
previous generations. Figure 3 shows the update process for
�b, which has the following behaviors:

• When the population maintains the same best individual,
�b values become smaller in an effort to improve the
current solution.

• When the population updates its best individual, �b values
are adapted according to the current situation.

• When a �bj value reaches a zero value, it is restarted to

alterations = rand(�N × (C/P)�, N) ;1

for all alterations do2

Select a random k dimension;3

Calculate M with equation 1 ;4

Og
i,j = Og

i,j + (upj − lowj) × Rand(−M, M);5

Fig. 2. Mutation algorithm for an i individual. i = 1, . . . , P . j =
1, . . . , N . rand(L,U) returns a random integer value within L and U.
Rand(L,U) returns a random real value within L and U. upj is the upper
bound for the j dimension. lowj is the lower bound for the j dimension.

if F (Xg−1
best) > F (Xg

best) then1

�bj =
∣∣∣(Xg−1

best,j − Xg
best,j

)
/(upj − lowj)

∣∣∣;2

else3

�bj = Rand(0.0, �bj);4

if a �bj value is equal to 0 then5

Replace it with B × (1.0 − Rand(0.0, 1.0)× g/G) ;6

Fig. 3. Recalculation of �b. g is the current generation. G is the max
generation. j = 1, . . . , N .

maintain the movility of the solutions.

Equation 1 also allows the mutation operator to use the B
stepsize value for the remaining P −C individuals (global ex-
ploration). The B factor is affected by the generation number.
Later iterations will imply smaller stepsizes. This will promote
local exploitation in later stages and global exploration in the
earlier ones.

M =
{

�bj i ≤ C
B × (1.0 − Rand(0.0, 1.0)× g/G) i > C

(1)

B. Crossover operator

The crossover operator requires 3 individuals to generate
an offspring: 2 mutant individuals (O

′g
k and O

′g
m) and an

individual from the current population (Xg
l). The offspring

Og
i will be allocated between its parents as seen in Figure 8.

New offspring can be selected as parents for the remaining
offspring individuals.

The C parameter also affects the selection of the O
′g
k and

Xg
l individuals. O

′g
k is the first mutant individual selected as

parent and Xg
l is the individual from the current population

which will be used as parent as well. When C = 1, any
individual can be selected; when C = P , elitism is ensured,
promoting exploration around the best individual. Figure 6
illustrates the effects of C in the crossover operator.

C. Recalculation of C Adaptive Parameter

The C value changes depending on the search success in
the last generation, determined by the comparison of the best
fitness values of the current and previous generations. Figure
9 shows the recalculation of C parameter. If a “better” best
result was found, then C is decreased, encouraging global
exploration. Otherwise, C is increased to encourage local
exploitation. C has the following behaviors:

16

Fig. 4. Two different scenarios for mutation operator: C = 1 (left) and C = P (right). The fittest C offspring perform local exploitation using �b steps and
the remaining ones perform global exploration using B steps.

Fig. 5. Mutation operator can explore in all dimensions of the search space.

Fig. 6. Two different scenarios for crossover operator: C = 1 (up) and C =
P (down). C parameter affects the selection frames of the k and l individuals.
k is the first mutant selected as parent. l is the population individual selected as
parent. Dots represent population individuals and triangles represent mutants.

• When the population converges, C = P to improve the
elite individual with more precision.

• When the population has successive improvements, C =
1, encouraging the exploration of new search areas.

for i = 1 To P do1

c1 = Rand(0.0, 1.0);2

c2 = Rand(0.0, 1.0− c1);3

c3 = 1.0 − c2 − c1;4

Og
i = c1 × Og

rand(1,P−C+1) + c2 ×5

Xg
rand(1,P−C+1) + c3 × Og

rand(1,P);

Fig. 7. Crossover operator algorithm.

Fig. 8. The new offspring individual will be allocated in an area between
its three parents.

III. EXPERIMENTS

The experiments aim to confirm that EEv is competitive
against other EAs and also look to observe the differences
against approaches which use other information such as a
Hessian or covariance matrix. We measure the Error and
Evaluation values for each trial in a similar way to the one
proposed in the test suite for CEC 2005 special session on real-

17

TABLE II
TEST FUNCTIONS

Unimodal functions
Separable

fsph Sphere model
f2.22 Schwefel’s problem 2.22
f2.21 Schwefel’s problem 2.21
fstp Step function
fqtc Quartic function with noise

Non-separable
f1.2 Schwefel’s problem 1.2

Multimodal functions
Separable

fsch Generalized Schwefel’s problem 2.26
fras Generalized Rastrigin’s function

Non-separable
fros Generalized Rosenbrock’s function
fack Ackley’s function
fgrw Generalized Griewank’s function
fsal Salomon’s function
fwhi Whitley’s function

fpen1,2 Generalized penalized functions

if F (Xg−1
best) > F (Xg

best) then1

if C > 1 then2

C = C − 1;3

else4

if C < P then5

C = C + 1;6

Fig. 9. Recalculation of C. Xg
best

is the elite individual. F (X0
best

) =
F (X1

best).

parameter optimization [6]. The benchmark functions [3] are
specified in table II. We conducted 30 trials per test function.
Error is equal to (F (xo)−F (x∗)) where xo is the best reported
solution for the corrresponding algorithm and x∗ is the global
optimum value. Evaluation value is the number of function
evaluations (FEs) required to reach an Error value of 10−8.
Furthermore, we measure the number of successful trials that
reach the target accuracy value. N is the dimensionality of
the test function. The stop condition criterion of each run
was 10, 000×N function evaluations (FEs). Due to the space
limitation on this paper, we show a comparison between EEv
and three state-of-the-art approaches. The selected approaches
are:

• DE/rand/1/bin (DE) selected because it is a well-known
EA [2].

• μ-PSO selected because it is a competitive micro-
population approach [9].

• Restart CMA-ES [12] selected for measuring the gap
against a technique that uses Hessian and covariance
matrices. Also, it was best technique on CEC 2005 special
session on real-parameter optimization.

All the experiments were performed using a Pentium 4
PC with 512 MB of RAM, in C language over a Linux
environment. The parameter sets for the techniques were:

1) EEv: P = 5, B = 0.6.
2) DE: P = N, CR = 0.9, F = 0.9, based on [5].
3) μ-PSO: P = 6, C1 = C2 = 1.8, Neighborhoods = 2,

Replacement generation = 100, Replacement particles=
2, Mutation % = 0.1, based on [9].

4) Restart CMA-ES: set as in [12].

A. Performance evaluation

We performed a comparison of EEv against DE, μ-PSO
and Restart CMA-ES. Table III shows the mean Error values
and the number of successful trials (trials where the technique
reach the target Error value) obtained on the benchmark
functions with N = 30, 50, 100. Table IV shows the mean
Evaluation values required to reach the target Error value.
Tests showed that:

1) EEv outperformed DE and μ-PSO.
2) The better performance of EEv over DE and μ-PSO is

more significant in functions with N = 50 and N =
100.

3) EEv found global optimum values on 10 out of 15
functions, equal to CMA-ES. It found more global
optimum values than μ-PSO and DE.

4) EEv required less FEs to find global optimum values
than DE and μ-PSO.

5) EEv maintained its performance on problems with N ≥
50 like μ-PSO.

We confirmed that EEv has a competitive performance in
global optimization problems with a high dimensionality by
requiring the fine-tuning of just two parameters. However, EEv
is still surpassed by CMA-ES. This fact is a confirmation of
the efficiency of using extra information to conduct the search.

B. Analysis of EEv’s behavior

The results obtained suggested that EEv searched locally
most of the time (see Table V). This behavior has two
meanings: (1) EEv performed few significant improvements to
population; and (2) EEv used most of the time for searching
on nonpromising regions.

We detected some deficiencies on the crossover operator.
Crossover operator has a similar behavior to bisection and
false position methods for finding equation roots values: the
solution has to be enclosed between the reference values. The
parent selection on EEv is a random mechanism so the proper
parent selections depends on the mutation operator exploration
capabilities and on randomness.

We identified two different failure scenarios: (1) Max FEs
were not enough to reach the target Error value; and (2)
premature convergence was reached. The main cause of these
scenarios was the reduction of global exploration capabilities
in the last stages. This means that if EEv did not find
the optimal value region on time, it got stuck over a local
minimum value.

IV. CONCLUSIONS AND FUTURE WORK

This paper described a novel evolutionary method called
Elitistic Evolution. EEv is a population-based technique which

18

TABLE III
MEAN ERROR VALUES OBTAINED ON FUNCTIONS WITH N = 30, 50, 100.

A 0.0 VALUE MEANS THAT 10−8 WAS REACHED IN ALL RUNS (100%
SUCCESS RATE). ON VALUES LIKE X.XXE+X(Y) Y REPRESENT THE

NUMBER OF SUCCESSFUL TRIALS (ONLY WHEN Y > 0).

30 EEv DE µ-PSO CMA-ES
fsph 0.0 0.0 0.0 0.0
f2.22 0.0 0.0 0.0 0.0
f2.21 1.26E-2 1.41E+1 9.53E-2 0.0
fstp 0.0 3.33E-2(28) 0.0 0.0
fqtc 3.94E-3 1.63E-2 1.69E-2 3.89E-2
f1.2 5.60E-3 1.12E-1 1.99E-1 0.0
fsch 5.53E+3 1.38E+2 1.58E+3 1.24E+4
fras 0.0 2.53E+1 1.30E+1 7.27E+0(3)
fros 1.49E+1(4) 2.15E+0 5.98E+1 2.54E-3
fack 0.0 0.0 0.0 0.0
fgrw 3.44E-3(5) 3.44E-3(22) 3.84E-2(5) 0.0
fpen1 0.0 1.03E-2(27) 0.0 0.0
fpen2 0.0 7.32E-4(28) 0.0 0.0
fsal 6.39E-1 2.48E-1 4.93E-1 2.04E-1

fwhit 1.60E+1(8) 3.37E+2 3.58E+2 4.93E+2
50 EEv DE µ-PSO CMA-ES

fsph 0.0 1.31E-2 0.0 0.0
f2.22 0.0 3.36E-2 0.0 0.0
f2.21 4.38E-2 2.11E+1 4.20E-1 0.0
fstp 0.0 4.33E-1(20) 0.0 0.0
fqtc 5.17E-3 6.68E-2 4.05E-2 9.14E-2
f1.2 2.32E-1 4.53E+4 6.49E+0 0.0
fsch 2.75E+3 6.66E+3 3.28E+3 2.07E+4
fras 0.0 9.32E+1 2.55E+1 2.54E+1
fros 4.32E+1(1) 3.78E+1 5.98E+1 1.46E-3
fack 0.0 6.90E-2 1.23E-8(25) 0.0
fgrw 1.29E-2(12) 1.41E-2 2.24E-2(11) 0.0
fpen1 0.0 6.90E-2 0.0 0.0
fpen2 0.0 3.81E-1 0.0 7.32E-4(28)
fsal 9.99E-1 1.15E+0 8.46E-1 2.99E-1

fwhit 6.87E+1(3) 1.58E+5 6.82E+2 1.18E+3
100 EEv DE µ-PSO CMA-ES
fsph 0.0 4.59E+3 0.0 0.0
f2.22 3.40E-6 5.64E+1 0.0 0.0
f2.21 2.69E-1 1.41E+1 6.27E+1 5.94E-3(1)
fstp 0.0 3.74E+3 1.00E-1(27) 0.0
fqtc 8.47E-3 3.52E+0 1.28E-1 2.17E-1
f1.2 1.43E+1 2.45E+5 2.45E+2 0.0
fsch 5.53E+3 2.86E+4 8.38E+3 4.15E+1
fras 0.0 9.05E+2 5.37E+1 5.67E+1
fros 5.52E+1 2.41E+6 1.39E+2 7.74E-4
fack 3.53E-7 8.67E+0 2.24E-7(2) 0.0
fgrw 6.47E-3(17) 4.23E+1 1.11E-2(15) 0.0
fpen1 0.0 4.36E+5 0.0 0.0
fpen2 0.0 2.73E+6 0.0 1.79E-3(26)
fsal 1.67E+0 9.45E+0 1.61E+0 1.04E+0

fwhit 2.39E+2(1) 4.35E+15 2.36E+3 8.95E+3

works better with small populations P ≤ 5. EEv was created
to solve high-dimensionality optimization problems (N ≥ 30)
without using complex mechanisms such as Hessian or covari-
ance matrix. Instead, just two paramenters must be calibrated
by the user: population size (P) and base step size (B).

EEv solved 15 well-known benchmark functions and its
results were compared with those obtained by state-of-the-
art techniques. We confirmed that EEv is competitive against

TABLE IV
AVERAGE FES REQUIRED IN SUCCESS RUNS.

30 EEv DE µ-PSO CMA-ES
fsph 1.77E+4 1.89E+5 1.08E+5 3.30E+3
f2.22 8.11E+4 2.72E+5 1.73E+5 7.80E+3
f2.21 – – – 1.15E+3
fstp 3.17E+4 7.40E+4 7.88E+4 3.34E+2
f1.2 – – – 3.60E+4
fras 9.20E+4 – – 2.28E+5
fros 1.53E+5 – – –
fack 8.96E+4 2.86E+5 2.52E+5 6.46E+3
fgrw 4.53E+4 1.93E+5 1.25E+5 3.99E+3
fpen1 3.14E+4 1.75E+5 1.11E+5 5.20E+3
fpen2 3.50E+4 1.93E+5 1.12E+5 7.60E+3
fwhit 1.91E+5 – – –

50 EEv DE µ-PSO CMA-ES
fsph 6.82E+4 – 1.96E+5 5.20E+3
f2.22 2.72E+5 – 3.14E+5 1.31E+4
f2.21 – – – 2.44E+4
fstp 5.09E+4 3.72E+5 1.67E+5 9.02E+2
f1.2 – – – 9.51E+4
fras 1.87E+5 – – –
fros 1.75E+5 – – –
fack 2.09E+5 – 4.54E+5 9.85E+3
fgrw 7.42E+4 – 2.01E+5 7.10E+3
fpen1 5.49E+4 – 02.03E+5 8.19E+3
fpen2 6.37E+4 – 2.02E+5 1.05E+4
fwhit 3.96E+5 – – –

100 EEv DE µ-PSO CMA-ES
fsph 1.48E+5 – 4.07E+5 9.90E+3
f2.22 – – 7.26E+5 5.08E+4
f2.21 – – – 8.60E+4
fstp 1.13E+5 – 5.36E+5 4.12E+3
f1.2 – – – 4.07E+5
fras 5.81E+5 – – –
fack – – 9.61E+5 1.80E+4
fgrw 1.47E+5 – 4.27E+5 1.56E+4
fpen1 1.21E+5 – 4.27E+5 1.38E+4
fpen2 1.36E+5 – 4.25E+5 5.31E+4
fwhit 8.94E+5 – – –

TABLE V
C PARAMETER AVERAGE FREQUENCY. THE TABLE CONTAINS THE

RELATIVE FREQUENCY OF THE C VALUES AFTER THE G GENERATION

TIME. A 100% VALUE MEANS THAT AN SPECIFIC VALUE WAS USED ON

EVERY GENERATION OF THE TRIAL.

C = 1 C ∈ [2, P − 1] C = P

Unimodal
Separable 0.03% 3.97 96.01 %

Non-separable 0.03% 9.82% 90.16%
Multimodal

Separable 0.01% 3.86% 96.13 %
Non-separable 0.02% 3.66% 96.32%

evolutionary algorithms, but its performance was not better
with respect to techniques which uses extra information such
as the Restart CMA-ES. EEv performed well in most of
the test cases and outpferformed, mostly in problems with
a high dimensionality (N ≥ 30), DE/rand/1/bin and μ-PSO
by requiring less FEs. However, premature convergence was

19

detected when C got stuck in the P value before 1
8 of the FEs

period of time. More comparative studies and further analysis
should be carried out to provide a more detailed understanding
of EEv. We also plan to test EEv in constrained and in multi-
objective optimizaton problems.

ACKNOWLEDGMENTS

The second author acknowledges support from CONACYT
through project 79809-Y and third, 50206-H & SIP 20091587.

REFERENCES

[1] Eiben, A.E.,Smith Smith, J.E.: Introduction to Evolutionary Comput-
ing. Springer. (2003)

[2] Storn, R., Price, K.: Differential Evolution - a simple and efficient
heuristic for global optimization. Journal of Global Optimization,
Volume 11, Number 4, Springer Netherlands. (1997) 341–359.

[3] Mezura-Montes, E., Coello, C CA., Velazquez, R J.: A comparative
study of differential evolution variants for global optimization. Pro-
ceedings of the 8th annual conference on Genetic and evolutionary
computation. (2006) 485–492.

[4] Viveros, J F.: DSE: A Hybrid Evolutionary Algorithm with Mathe-
matical Search Method. Special issue journal Research in Computing
Science. RCS. (2008)

[5] Noman, N., Iba, H.: Accelerating Differential Evolution Using an
Adaptive Local Search. IEEE Transactions on Evol. Comput. Vol.
12, No. 1 IEEE Press. (2008) 107–125

[6] Suganthan, P. N., Hansen, N., Liang, J. J., Deb, K., Chen, Y-P.,
Auger, A., Tiwari, S.: Problem Definitions and Evaluation Criteria
for the CEC 2005 Special Session on Real-Parameter Obtimization.
Nanyang Technol. Univ., Singaporem IIT Kanpur, India, KanGal Rep.
2005005. (2005)

[7] Krishnakumar, K.: Micro-genetic algorithms for stationary and non-
stationary function optimization. SPIE: Intelligent control and adap-
tive systems, 1196. (1989) 289–296.

[8] Goldberg, D-E.: Sizing Populations for Serial and Parallel Genetic
Algorithms. Proceedings of the Third International Conference on
Genetic Algorithms. Morgan Kauffman Publishers. (1989) 70–79

[9] Fuentes-Cabrera, J-C., Coello-Coello, C-A.: Handling Constraints in
Particle Swarm Optimization using a Small Population Size. LNCS.
MICAI 2007: Advances in Artificial Intelligence. Springer-Verlag.
vol 4827. (2007) 41–51

[10] Toscano-Pulido, G., Coello-Coello, C-A.: Multiobjective Optimiza-
tion using a Micro-Genetic Algorithm. Proceedings of the Genetic
and Evolutionary Computation Conference (GECCO 2001). Springer-
Verlag. (2001) 126–140

[11] Kazarlis, S.E., Papadakis, S.E., Theocharis, J.B., Petridis, V.: Micro-
genetic Algorithms as Generalized Hill-Climbing Operators for GA
Optimization. Evol. Comput., vol 5, no. 3. IEEE Press. (2001) 204–
217

[12] Auger, A., Kern, S., Hansen, N.: A Restart CMA Evolution Strategy
with Increasing Population Size. CEC 2005 Special Session on Real-
Parameter Obtimization. Nanyang Technol. Univ., Singaporem IIT
Kanpur, India (2005)

[13] Parsopoulos, K.E.: Cooperative Micro-Particle Swarm Optimization.
ACM 2009 World Summit on Genetic and Evolutionary Computation
(2009 GEC Summit), Shanghai, China. ACM. (2009) 467–474

20

