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Abstract

Conditions and a criterion for the presence of minimal components in the foliation of
a Morse form ω on a smooth closed oriented manifold M are given in terms of (1) the
maximum rank of a subgroup in H1(M, Z) with trivial cup-product, (2) ker[ω], and
(3) rkω

def= rk im[ω], where [ω] is the integration map.
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1 Introduction

Let M be a connected smooth closed oriented n-dimensional manifold and
ω a Morse form on M , i.e. a closed 1-form with Morse singularities (locally
the differential of a Morse function). This form defines a foliation Fω on M \
Sing ω, where Sing ω are the form’s singularities.

The problem of studying the topology of such foliations was set up by S.No-
vikov [9] as far back as in early 80s in connection with their numerous ap-
plications in physics [10,11], which have been recently impulsed by the new
advances in the mathematical theory [2,3].

The topology of a Morse form foliation can be described as follows. Its leaves
are either compact, non-compact compactifiable, or non-compactifiable. A leaf
γ is called compactifiable if γ ∪ Sing ω is compact. There is a finite number of
non-compact compactifiable leaves; thus their union together with Sing ω has
zero measure. The rest of M consists of a finite number of open areas covered
by compact leaves (called maximal components) or non-compactifiable leaves
(called minimal components).
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Compact leaves have neat properties [8]. All leaves in a maximal component
are diffeomorphic. A maximal component is an open cylinder over any its leaf.
The form’s integral by any cycle lying in a maximal component is zero.

Non-compactifiable leaves, on the contrary, have very complex behaviour [1].
Each such leaf is dense in its minimal component. A minimal component can
cover a rather complex set in M ; for any M with Betti number β1(M) ≥ 2
there exists a foliation whose only minimal component covers the whole M \
Sing ω. A minimal component contains at least two homologically independent
cycles with non-commensurable integrals [8].

In this paper we consider conditions for a foliation to have minimal compo-
nents.

The form’s singularities give little information on the foliation topology. Fω is
compact (i.e., all its leaves are compact) if and only if all singularities of ω are
spherical. Otherwise there always exists a form with the same singularities of
the same indices but with the foliation without minimal components [12].

A more useful characteristic of the form is its rank rk ω
def
= rk im[ω], where

[ω](z) =
∫
z ω ∈ R, i.e. the rank of its group of periods; it is a cohomologous in-

variant. If rkω ≤ 1, the foliation has no minimal components [9]. For rkω ≥ 2,
the foliation of a non-singular form is minimal and uniquely ergodic; however,
for forms with singularities the situation is much more complicated.

In any cohomology class with rkω ≥ 2 there is a form with a minimal folia-
tion [1]. If the cohomology class of ω, rk ω ≥ 2, contains a non-singular form,
then Fω has a minimal component, though—unlike non-singular case—it is not
necessarily minimal [4]. Existence of non-singular form in a given cohomology
class was studied in [5]; however, the only manifolds allowing non-singular
closed forms are bundles over S1 [13].

We show that for large enough rkω any foliation has a minimal component—
namely, for rkω > h(M), where h(M) is the maximum rank of an isotropic
(i.e., with trivial cup-product) subgroup in H1(M, Z) (Theorem 13). In par-
ticular, the foliation of a Morse form in general position on a manifold with
non-trivial cup-product has a minimal component (Theorem 18).

The mentioned Theorem 13 gives a simple yet powerful practical sufficient
condition for the presence of minimal components. Methods of calculating
h(M) for many important manifolds can be found in [7]; the most useful of
them are listed in Remark 14. For example, Fω on M2

g with rk ω > g = h(M2
g )

has a minimal component (Example 16), so does Fω on T n (torus) with rkω >
1 = h(T n) (Example 15).

Yet the group ker[ω] gives more fine-grained information on the foliation struc-
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ture than the mere rkω = rk im[ω]. We call a subgroup G ⊆ H1(M) parallel
if there exists an isotropic subgroup H ⊆ H1(M, Z) such that any homomor-
phism ϕ : G → Z is realized by some element of H . If any of the following
equivalent conditions holds then Fω has a minimal component (Theorem 11):

(i) For any parallel subgroup G it holds rk G − rk(G ∩ ker[ω]) < rk ω (note
that non-strict inequality here holds for any group).

(ii) The same holds for any parallel subgroup G such that G ∩ ker[ω] = 0.
(iii) The same holds for any maximal parallel subgroup G.

Finally, the foliation Fω has a minimal component if and only if there exists
z ∈ H1(M)\ker[ω] such that z ◦ [γi] = 0 (intersection index) for all (compact)
leaves γ1, . . . , γM(ω), one from each maximal component (Theorem 7).

Note that cohomologous invariants of ω alone do not give much information
on the presence of minimal components, especially when it comes to necessary
conditions (for any form with rkω ≥ 2 there is a cohomologous form with min-
imal foliation [1]). So we had to bring into consideration some characteristics
of the manifold (h(M), parallel subgroups) and the foliation (γi).

The paper is organized as follows. Section 2 introduces some definitions and
facts connected with Morse form foliation. Auxiliary Section 3 is devoted to
expressing H1(M) in terms of the foliation structure. In Section 4 we give
a criterion (Theorem 7) and a necessary condition for a foliation to have a
minimal component in terms of ker[ω]. Finally, in Section 5 we give sufficient
conditions for a foliation to have a minimal component in terms of ker[ω]
(Theorem 11), h(M) (Theorem 13), and cup-product (Theorem 18).

2 A Morse form foliation

In this section we introduce, for future reference, some useful notions and facts
about Morse forms and their foliations.

Recall that M is a connected smooth closed oriented n-dimensional manifold;
n ≥ 2. A closed 1-form ω on M is called a Morse form if it is locally the
differential of a Morse function. Sing ω = {p ∈ M | ω(p) = 0} denotes the set
of its singularities; this set is finite since the singularities are isolated and M
is compact. On M \ Sing ω the form defines a foliation Fω.

Definition 1 A leaf γ ∈ Fω is called compactifiable if γ ∪ Sing ω is compact;
otherwise it is called non-compactifiable.
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Note that a compact leaf is compactifiable. The number K(ω) of non-compact
compactifiable leaves γ0

i is finite and can be estimated in terms of the number
of singularities of ω [8].

Definition 2 A connected component C of the union of compact leaves is
called maximal component of the foliation.

A maximal component is open; the number M(ω) of maximal components is
finite and can be estimated in terms of homological characteristics of M and
the number of singularities of ω [8].

Consider the following decomposition into mutually disjoint sets holds:

M =
(M(ω)⋃

i=1

Ci

)
∪ ∆, (1)

where Ci are all maximal components and

∆ =
(m(ω)⋃

i=1

Cmin
i

)
∪

(K(ω)⋃
i=1

γ0
i

)
∪ Sing ω, (2)

Cmin
i being all minimal components of Fω and m(ω) being their number. The

closed set ∆ has a finite number of connected components ∆j .

If Sing ω = ∅ then Fω is either minimal or compact. In the latter case it has
exactly one maximal component C = M , which is a bundle over S1 with fiber
γ ∈ Fω [13].

In the rest of this paper we suppose Sing ω 
= ∅. In this case each maximal
component Ci is a cylinder over a compact leaf:

Ci
∼= γi × (0, 1), (3)

where the diffeomorphism maps γi to leaves of Fω; this map can be continu-
ously extended to γi× [0, 1] [8]. Since ∂Ci ⊆ ∆ consists of one or two connected
components, each Ci adjoints one or two of ∆j . Therefore the decomposition (1)
allows representing M as the foliation graph Γ—a connected pseudograph (a
graph admitting multiple loops and edges) with edges Ci and vertices ∆j; an
edge Ci is incident to a vertex ∆j if ∂Ci ∩ ∆j 
= ∅; see Figure 1.

Definition 3 The group Hω generated by the homology classes of all compact
leaves is called the homology group of the foliation.

Since M is closed and oriented, the group Hn−1(M) is finitely generated and
free; therefore so is Hω ⊆ Hn−1(M).
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Fig. 1. Decomposition (1) and the corresponding foliation graph.

A set of elements generating a free group might not contain its basis, e.g.,
Z = 〈2, 3〉. However:

Theorem 4 In Hω there exists a basis e consisting of homology classes of
leaves: e = {[γ1], . . . , [γm]}, γi ∈ Fω.

PROOF. Consider a spanning tree T of Γ and the corresponding chords
h1, . . . , hm. We will show that e = {[γ1], . . . , [γm]} is the desired basis, where
γi is any leaf in the maximal component hi = γi×(0, 1) (all leaves in a maximal
component are homologous).

(i) The system e is independent. Indeed, let z be a cycle in the foliation graph
Γ:

z = (p1, x1, . . . , ps, xs, ps+1), ps+1 = p1,

where xi 
= xj are edges connecting vertices pi, pi+1. For z, a closed curve α
in M can be (non-uniquely) constructed from the elements of the cylinders
xi = γi×(0, 1) connected by segments lying in pi = ∆i; obviously [α]◦ [γi] = 1.

For the chords h1, . . . , hm a system of cycles z1, . . . , zm in Γ can be constructed
such that each hi belongs to exactly one cycle zi; denote α1, . . . , αm the cor-
responding closed curves in M . Then given

∑
i ni[γi] = 0, for any j it holds

0 = [αj ] ◦ ∑
i ni[γi] = nj .

(ii) 〈e〉 = Hω. Indeed, consider a leaf γ such that its maximal component x /∈
{hi}. Then x ∈ T is a bridge connecting two different (non-empty) connected
components: T − x = T ′ ∪ T ′′, i.e. Γ − (x ∪ {hi}) = T ′ ∪ T ′′. The latter
means that γ ∪ {γi} separate the two corresponding submanifolds in M , i.e.
[γ] +

∑
i∈I ±[γi] = 0. �

In fact from the proof it follows that for every compact leaf γ, the coordinates
of [γ] in the basis e belong to {±1, 0}.
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3 The manifold’s homologies and the foliation

Recall that Ck = γk × (0, 1), k = 1, ..., M(ω), are all maximal components and
∆ = M \ (

⋃
k Ck ). We will study the relationship between H1(M) and the

decomposition (1).

Theorem 5 Let z ∈ H1(M). If z ◦ [γk] = 0 for all k = 1, . . . , M(ω) then
z ∈ i∗H1(∆), where i : ∆ ↪→ M .

PROOF. Let ϕk : γk×I → M , I = (−1, 1) be the diffeomorphisms from (3),
with γk = ϕk(γk, 0) ⊂ M .

Below we will show that z is realized by a closed curve that does not intersect
with any γk. Given this, consider M ′ = M \ (

⋃
k γk ); z ∈ j∗H1(M

′), j : M ′ ↪→
M . By (1),

M ′ = ∆ ∪
(⋃

k
ϕk

(
γk × (−1, 0)

)
∪ ϕk

(
γk × (0, 1)

))
.

Thus ∆ is the deformation retract of M ′, the corresponding homotopy on
M ′ \ ∆ being rs

(
ϕk(x × t)

)
= ϕk

(
x × (s + (1 ± s)t)

)
; recall that ϕk can be

continuously extended to γk × [−1, 1] with γk × {±1} ⊆ ∆. This proves the
theorem.

It remains to show that z can be realized by a curve that does not intersect
with any γk. Denote γ = γk and ϕ = ϕk. Let the orientation of γ be such that
ϕ(x, t) goes along its normal vector as t increases.

Consider a closed curve α realizing z, see Figure 2. Without loss of generality
we can assume that α is transverse to γ = γk and even that in a small enough
neighborhood U(γ) it goes along the element I of the cylinder imϕ.
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Fig. 2. Removing intersection points of α and γ.

Since [α]◦ [γ] = 0, it holds α∩γ = ∪2p
i=1Pi, where

∑
sgn Pi = 0. Suppose p 
= 0.

Consider Pi, Pi+1 such that sgn Pi 
= sgn Pi+1 and let P−ε
i , P−ε

i+1; P+ε
i , P+ε

i+1 ∈
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U(γ)∩α, where P t
j = ϕ(Pj, t). Since γ is connected, there is a curve PiPi+1 ⊂ γ.

Obviously, [α] = [α′] + [α′′], where

α′ =
(
α \ (P−ε

i P+ε
i ∪ P+ε

i+1P
−ε
i+1)

)
∪ P+ε

i P+ε
i+1 ∪ P−ε

i+1P
−ε
i

and

α′′ = P−ε
i P+ε

i P+ε
i+1P

−ε
i+1;

here P+ε
i P+ε

i+1 = ϕ(PiPi+1, +ε) and P−ε
i+1P

−ε
i = −ϕ(PiPi+1,−ε). However,

[α′′] = 0 since α′′ is homotopy-equivalent to PiPi+1.

The new curve α′ has 2p − 2 intersection points with γ = γk. Induction by p
and then by k finishes the proof. �

Theorem 6 Let e = {[γ1], . . . , [γm]}, γi ∈ Fω, be a basis of Hω ⊆ Hn−1(M),
De = {D[γ1], . . . , D[γm]} ⊂ H1(M) a system of dual cycles, i.e. [γi] ◦D[γj] =
δij, and DHω = 〈De〉. Then

H1(M) = 〈DHω, i∗H1(∆)〉.

Existence of e follows from Theorem 4.

PROOF. Let z ∈ H1(M) and ni = z ◦ [γi]. Consider the cycle z′ = z −∑
niD[γi]. Then z′ ◦ [γi] = 0 for any i = 1, . . . , m and therefore for any

i = 1, . . . , M(ω). By Theorem 5, z′ ∈ i∗H1(∆). �

4 Criterion and a necessary condition

Consider the map [ω] : H1(M) → R, [ω](z) =
∫
z ω. Define rkω

def
= rk im[ω];

obviously, rk ker[ω] + rk ω = β1(M), the Betti number.

For a subgroup H ⊆ Hn−1(M), denote H ‡ ⊆ H1(M) the subgroup H ‡ =
{z ∈ H1(M) | z ◦ H = 0}. Note that H1 ⊆ H2 implies H ‡

2 ⊆ H ‡
1 .

Theorem 7 Fω has a minimal component iff H ‡
ω 
⊆ ker[ω].

PROOF. Suppose Fω has no minimal components, so that (2) is reduced to

∆ =
(K(ω)⋃

i=1

γ0
i

)
∪ Sing ω.
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By Theorem 5, H ‡
ω = i∗H1(∆). Since

∫
z ω = 0 for any z ∈ i∗H1(∆), we have

H ‡
ω ⊆ ker[ω].

Suppose now Fω has a minimal component A. Consider p ∈ A and the leaf
γp � p. Through this point, in some its neighborhood Vp ⊆ A a (local) integral
curve ϕ ⊂ A of the vector field ξ, ω(ξ) = 1, can be drawn. Since ϕ is transverse
to the leaves and the leaf γp is dense in A, there exists a point q ∈ γp ∩ ϕ,
q 
= p. Let I ⊂ Vp ⊆ A be the segment of the integral curve between the points
p and q. The leaf γp is connected, therefore there exists a curve J ⊂ γp joining
the points p and q. Then c = I ∪ J ⊂ A is a closed curve and

∫
c ω =

∫
I ω 
= 0.

Since [c] ◦ Hω = 0, we have H ‡
ω 
⊆ ker[ω]. �

This implies a necessary condition for Fω to have a minimal component:

Theorem 8 If Fω has a minimal component then for any set of compact
leaves γ1, . . . , γs ∈ Fω it holds

〈[γ1], . . . , [γs]〉 ‡ 
⊆ ker[ω].

Example 9 ([6]) If a Morse form foliation on M2
g has g homologically in-

dependent compact leaves then it has no minimal components. Indeed, choose
[γ1], . . . , [γg], D[γ1], . . . , D[γg] (dual 1-cycles) as a basis of H1(M

2
g ). Let H =

〈[γ1], . . . , [γg]〉. Since [γi] ◦ D[γj] = δij, H ‡ = H. Obviously, H ⊆ ker[ω]. By
Theorem 8 the foliation has no minimal components.

5 Sufficient conditions

We call a subgroup H ⊆ H1(M, Z) isotropic if u � u′ = 0 (cup-product) for
any u, u′ ∈ H .

Definition 10 A subgroup G ⊆ H1(M) is called parallel if there exists an
isotropic subgroup H ⊆ H1(M, Z) such that any homomorphism ϕ : G → Z is
realized by an element of H, i.e. there exists u ∈ H such that u|G = ϕ.

Theorem 11 If any of the following equivalent conditions holds then Fω has
a minimal component:

(i) For any parallel subgroup G it holds

rk G − rk(G ∩ ker[ω]) < rk ω; (4)

(ii) Inequality (4) holds for any parallel subgroup G such that G∩ker[ω] = 0;
(iii) Inequality (4) holds for any maximal parallel subgroup G.
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Note that non-strict inequality in (4) holds for any subgroup G and any map
[ω] out of general group-theoretic considerations.

PROOF. Condition (i) implies existence of a minimal component. Indeed,
suppose Fω has no minimal components. Consider a group G = DHω =
〈D[γ1], . . . , D[γm]〉, where [γ1], . . . , [γm] is a basis in Hω. By Theorem 6, rk ω =
rk G − rk(G ∩ ker[ω]). However, G = DHω is parallel. Indeed, associate with
Hom(DHω, Z) the subgroup H ⊆ H1(M, Z), H = 〈u1, . . . , um〉, where ui(z) =
[γi]◦z. Let D : H1(M, Z) → Hn−1(M) be Poincaré duality map. Then D(ui �
uj) = Dui ◦ Duj = [γi] ◦ [γj] = [γi

⋂
γj] = 0 since γi

⋂
γj = ∅ for i 
= j; thus H

is isotropic.

(ii) ⇒ (i). Let G be a parallel subgroup; G = G′ ⊕ (G ∩ ker[ω]) for some
(parallel) G′; then rk G − rk(G ∩ ker[ω]) = rk G′ < rk ω by (ii).

(iii) ⇒ (ii). Let G be a parallel subgroup, G ∩ ker[ω] = 0. For a maximal
parallel subgroup H ⊇ G, choose H ′ ⊇ G such that H = H ′ ⊕ (H ∩ ker[ω]).
Then rk G ≤ rk H ′ = rk H − rk(H ∩ ker[ω]) < rk ω by (iii). �

Example 12 Let M = T 3
1 # T 3

2 (3-dimensional tori), rk ω = 2, and ker[ω] ⊇
H1(T

3
2 ). For any parallel subgroup G such that G∩ker[ω] = 0 it holds rk G = 1.

By Theorem 11 (ii), Fω has a minimal component.

The following Theorem 13 gives a sufficient condition simpler and more prac-
tical, though rougher, than Theorem 11.

Theorem 13 Let h(M) be the maximum rank of an isotropic subgroup in
H1(M, Z). If rk ω > h(M) then Fω has a minimal component.

PROOF. Since for any parallel subgroup H it holds rk H ≤ h(M), the the-
orem follows from Theorem 11 (i). �

Remark 14 Some methods of calculating h(M) in terms of Betti numbers β1

and β2 can be found in [7], for instance:

(i) For r = rk ker � (cup-product H1(M, Z) × H1(M, Z) → H2(M, Z)),

β1 + β2r

β2 + 1
≤ h(M) ≤ β1β2 + r

β2 + 1
.

In particular, if β2 = 1 then h(M) = 1
2
(β1+r); if r = β1 then h(M) = β1;

(ii) If � is surjective, then

h(M) ≤ r +
1

2
+

√(
β1 − r − 1

2

)2

− 2β2;
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(iii) For the product,

h(M1 × M2) = max{h(M1), h(M2)};

(iv) For the connected sum with dim Mi ≥ 2,

h(M1 # M2) = h(M1) + h(M2).

Example 15 For a torus T n it holds h(T n) = 1 and rk ω ≤ n. The foliation
has a minimal component if (Theorem 13) and only if [9] rk ω > 1.

On a torus, rk ω characterizes the topology of the foliation. This is, though,
not always the case:

Example 16 For M2
g it holds h(M2

g ) = g and rk ω ≤ 2g. The foliation has
no minimal components if rk ω ≤ 1 [9] and has a minimal component if
g < rk ω ≤ 2g (Theorem 13). However, if 2 ≤ rk ω ≤ g, the topology of
the foliation may be quite different even in the same cohomology class. For
instance, while in any cohomology class with rk ω ≥ 2 there exists a form with
minimal foliation [1], for any 1 ≤ rk ω ≤ g there exists Fω without minimal
components.

Indeed, consider g tori Ti = M ′
i × S1, M ′

i = S1, with a form ωi = λi dt on
Ti, where t is the coordinate along the S1; Fωi

is compact. This form can be
locally transformed into a form ω′

i with some spherical singularities. Using
small spheres around these singularities, a connected sum M2

g = #g
i=1 Ti can

be constructed with ωi smoothly pasted together into a form ω on M2
g ; 1 ≤

rk ω = rk{λi} ≤ g and Fω has no minimal components.

Consider a Morse form in general position, i.e., with all periods being incom-
mensurable; rk ω = β1(M). The foliation of such a form can have no minimal
components: for example, if β1(M) = 0 then all closed forms on M are exact.
What is more, for any given n ≥ 3 and k ≥ 0 there exists a manifold M ,
dim M = n and β1(M) = k, with a form ω in general position such that Fω

has no minimal components:

Example 17 The manifold M = #k
i=1 Mi and ω constructed as in Example 16

(Mi standing for Ti and M for M2
g ) with M ′

i = Sn−1 and rk{λi} = k have the
desired properties. Note that here β2(M) = 0; however, by appropriate choice
of M ′

1, β1(M
′
1) = 0, a similar example can be constructed for any given set of

Betti numbers.

Theorem 18 Let ω be a Morse form in general position. If �: H1(M, Z) ×
H1(M, Z) → H2(M, Z) is non-trivial then Fω has a minimal component.
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PROOF. If � is non-trivial then h(M) < β1(M) = rk ω. By Theorem 13,
Fω has a minimal component. �

In addition, on M2
g all compact leaves of Fω with ω in general position are

homologically trivial. Indeed, consider [γ] =
∑

nizi, where {zi} is the basis of
cycles. Since

∫
γ ω =

∑
ni

∫
zi

ω = 0 and
∫
zi

ω are incommensurable, all ni = 0.
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