

Abstract— The paper presents a practical solution to describe
natural language syntax. This solution is based on a Generative
Dependency Grammar (GDG). A theoretical definition of these
grammars and some of their proprieties is given. GDG are
implemented in a declarative computer language GRAALAN
(Grammar Abstract Language). The paper shortly present the
features of GRAALAN and, after that, a more detailed
implementation of natural language syntax description is given.
GRAALAN offers for natural language syntactic description
some strong features that respond to the following requests: a
compact description, the possibility to express the syntax and the
agreement and to specify the errors met in a text. The description
has also the feature of reversibility. The paper presents some
conclusions concerning the using of GRAALAN to describe the
syntax (among others natural language features).

Index Terms—Dependency grammar, natural language syntax.

I. INTRODUCTION
HE approach of different linguistic chapters in a unified
manner was realized so far in many complex systems like

EUROTRA [1], EAGLES [2], ROSETTA [20]. These large
projects did not produce many successful implementations,
but they are very important at least from theoretical point of
view. One of the major drawbacks (among others) was the
lack of unity among different linguistic chapters approach.
Paradoxically, this lack of unity has grown for the worse due
to the (successful) standardization effort of the different
linguistic chapter representation, because the extremely useful
approach of each individual section was not sufficiently
correlated with the approach of other linguistic sections [11].
The language GRAALAN (Grammar Abstract Language) that
will be very shortly presented in section II of this paper try to
integrate many chapters of linguistic description and among
these, the syntactic description of a natural language.

A lot of language models and language grammar types were
proposed trying to solve the natural language description
problem. There are three of the linguistic models that seem to
be more successful and used in some applications [18]: TAG –
Tree Adjoining Grammar [16], HPSG – Head-Driven Phrase
Structure Grammar [17] and LFG – Lexical Functional
Grammar [19].

During the last years another idea was more and more
analyzed and studied: the dependency. Actually, it is quite an

Manuscript received July 10, 2008. Manuscript accepted for publication
October 20, 2008.

This work was supported in part by SOFTWIN SRL, Bucharest, Romania.
Stefan Diaconescu is with the SOFTWIN SRL, Bucharest, Romania (e-

mail: sdiaconescu@softwin.ro).

old idea – usually [21] is used as reference but the dependency
idea in the grammar is millennial – but new valences and
strength became attractive. The present paper is based on
some researches that try to make a connection between two
directions that seemed to be almost irreconcilable till now: the
generative approach and the dependency approach. We
present how this connection was done and implemented in the
syntactic section of a GRAALAN (section II) in order to find
a more adequate language model that could be used in natural
language processing and that have the potential to produce
many and better applications.

Some theoretical notions that are used to build
GRAALAN are presented in the section III: DT - Dependency
Trees, AVT - Attribute Value Trees, GDG - Generative
Dependency Grammar and GDGF - Generative Dependency
Grammar with Features. In section IV, it is presented how
GRAALAN is used to describe the syntax under the form of
rule sequence that indicates: the syntactic elements, the
dependencies between these elements and the agreement
between these elements. Finally (section V) some conclusions
and the stage of current implementations are presented.

II. GRAALAN: GRAMMAR ABSTRACT LANGUAGE
GRAALAN is a language (in fact, a meta-language) that

allows the description of a natural language and a
correspondence between two natural languages. It contains
some features that can be used to describe different natural
language chapters (sections):

a) Alphabet Section defines the codes of the signs used to
represent and describe the natural language. In this section the
following information can be put: phonetic alphabet
description (using, for example IPA – International Phonetic
Alphabet [13]), normal alphabet and special characters (using.
for example, UNICODE [14]), groups of characters
(diphthongs or triphthongs, etc.) that contain the
correspondences between some sequences of normal alphabet
and phonetic alphabet, alphabetic classes (vowel class,
consonant class, etc.). This section can describe also some
special notation systems like those used by Japanese or
Chinese languages.

b) Lexicon Section defines morphemes (roots, prefixes,
suffixes, prefixoids, suffixoids, etc.), words (lemmas, some
inflected forms of a word that accompanies the lemmas in an
ordinary dictionary, for example, plural form of a noun),
wordforms (some inflected form of another word that usually
appears in a dictionary), multiword expression (MWE are
groups of words represented as a DT - Dependency Tree),

Natural Language Syntax Description
using Generative Dependency Grammar

Ştefan Diaconescu

T

morphologic analytic structures, some typical syntactic
structures (taken from the syntactic description), etc. For each
lexicon entry some information belonging to the following
types are present: semantic information (gloss, synonyms,
antonyms, paronyms, hipernyms, hyponyms, connotations,
homonyms, meronyms, etc.), etymology (original language,
original form, transliteration of the original form),
syllabification (euphonic, phonetic and morphologic),
morphology (inflection situation, inflection rule identification,
and segmentation), etc.

c) Syllabification Rules Section defines the syllabification
rules for: euphonic syllabification (when the word is written
with the normal or special alphabet), phonetic syllabification
(when the word is written with the phonetic alphabet),
morphologic syllabification (that respects the morphologic
structure of the word). The elements of a word “separated” by
syllabification (or not) are: the normal alphabet characters,
groups (diphthongs, triphthongs, etc.) described in Alphabet
Section (phonetic groups), some special characters, other
constitutive elements (morphemes) described in Lexicon
Section (morphologic groups).

d) Morphology Section defines morphologic categories and
values. It is in fact an AVT - Attribute Value Tree (see section
III.B), where attribute nodes are morphologic categories and
value nodes are morphologic category values. Some
information is attached with each type of node. For example,
information attached to the attribute note is: the category
name, the abbreviation of the category name, the indication if
the category is inflected or not, (eventually) the name of a
procedural program. Information attached to the attribute
values are: the category value name, the abbreviation of the
category value name, indication if it belongs to a lemma (or
not), indication if it belongs to a lexicon entry (or not),
(eventually) the name of a procedural program.

e) Inflection Rules Section defines the rules that can be used
to generate the inflected forms. Lemma (from the lexicon)
indicates a Compound rule. A compound rule is a list of basic
rules. A basic rule contains an AVT where each leaf has one
or more associated elementary inflection rules. An elementary
inflection rule contains: a condition (logical expression) that
indicates when the transformation sequence must be used, a
transformation sequence (insert, delete, replace words or
characters) acting on normal alphabet, a transformation
sequence (insert, delete, replace words or characters) acting on
phonetic alphabet form, an AVT for analytic forms, relations
in a DT (dependency tree, see section III.A) for analytic
forms.

f) Inflection Forms Section defines the inflected forms of
the language. It contains an entry for an inflected form. An
entry contains: the inflected form written using the normal
alphabet, the inflected form written using the phonetic
alphabet, the reference of the word in the lexicon whose
inflected form is the current entry, the characterizing of the
inflection situation (i.e., an AVT with lexical categories and
lexical categories values), how the inflected form is syllabified

in different situations: euphonic, phonetic, morphologic and at
the end of the line (hyphenation).

g) Syntax Section defines the syntax rules (this section will
be detailed in the following sections of the paper).

h) Bilingual Correspondences Section defines the
correspondences between two languages for MWE (Multi
Word Expression) correspondences [7] (it contains
transformation rules based on dependency tree form of MWE,
where nodes can be invariable elements, partial variable
elements, total variable elements), word correspondences
(particular cases of the MWE correspondences where both
MWEs have only one word), syntactic structure
correspondences (a particular case of MWE correspondences
where the nodes can be non-terminals), morphologic analytic
structure correspondences (a particular case of MWE where
the correspondences is established between analytic inflection
forms), morphologic sub-tree correspondences (a particular
case of MWE too, that expresses the correspondences between
a source morphologic sub-tree and a target morphologic sub-
tree).

III. GRAALAN THEORETICAL BACKGROUND

A. Dependency Tree
A generative dependency tree [3] is a 6-tuple DT = {N, T, P,

A, SR, CR} where:
- N - is the set of non-terminals n: n (i1, i2, …),

ij∈SR
- T - is the set of the terminals t: t(i1, i2, …), ij∈SR
- P - is the set of pseudo-terminals p: p (i1, i2, …) ,

ij∈SR
- A - is the set of procedural actions a: a(i1, i2, …) ,

ij∈SR
- SR - is the set of subordinate relations sr: sr(i1),

i1∈N ∪ T ∪ P ∪ A ∪ CR
- CR - is the set of the coordinate relations cr:

cr(f1, f2,… / s1, s2, …), fi ∈N ∪ T ∪ P ∪ A ∪ CR
, si∈SR (f1, f2,… are named fixed entry and s1,
s2, … are named supplementary entry).

The non-terminals N are syntactic categories that can be

described having a name and a structure.
The terminals T are words that can be found in the lexicon

or can be obtained by applying some flexional rules on words
from the lexicon.

The pseudo-terminals P are non-terminals that contain only
terminals. When we will describe a dependency tree or a
grammar we will not cover all the words from the lexicon
because in this case the number of rules from the grammar can
be too big. So, we can say that some non-terminals that we
name pseudo-terminals (for example, some nouns or some
verbs) will never be described in the grammar, but they are
found in the lexicon.

The procedural actions (or “actions”) A are the set of the
routines that can be used to represent a certain portion of the
text that we analyze. For example, a number represented like a
sequence of digits or a mathematical formula or even an image

with a certain significance that appear in a text can be
“replaced” in grammars or dependency trees by a certain
procedural action.

The subordinate relations SR are relations between a
governor and a subordinate from the point of view of syntactic
role in a phrase (for example the relation between a verb and a
complement).

The coordinate relation CR are relations between two or
many (but usually two) syntactic parts of a phrase, for
example, the relation between “read” and “write” in the
phrase “I read and write.”. The coordinated elements are
represented by the fixed entries. A coordinate relation can also
be a governor for the elements that came eventually on its
supplementary inputs (that means that the set of coordinated
elements form a governor for the elements that come on the
supplementary inputs).

A dependency tree can be represented using the graphical
symbols from Fig. 1.

Fig. 1. Graphical DT symbols.

TABLE I.

LINKS IN A DEPENDENCY TREE
Link target Link

source NTPA GR CR
(supp.
entry)

CR
(fixed
entry)

None

NTPA 1 2 7
GR 3 6
CR 4 5 8
None 9 10

The conditions respected by the links in a dependency

tree are represented in Table I (there are 10 allowed situations)
where we noted:

- NTPA: Non terminal (N) or Terminal (T) or Pseudo
terminal (P) or Action (A).

- GR: governor/subordinate relation;
- CR: coordinates relation.
In a graphical representation:

- NTPA has maximum one input and maximum one
output;

- GR has one input and one output;
- CR has maximum one output, zero, one or many

supplementary input and a fixed number of fixed entry (we
will consider only two fixed entry).

Fig. 2. Example of dependency tree.

We will consider also that the dependency tree is

connected. As we can see, in this case, only one NTPA or one
coordinate relation can have not output. This NTPA or
coordinate relation will be named head.

The dependency trees will be used to define generative
dependency grammar (see section III.C) and generative
dependency grammar with features (see section III.D).

B. Attribute Value Tree
An attribute value tree (AVT) [4] [9] is used to describe

morphologic or syntactic structures. It is in fact a list of
attributes, each attribute having one or many values and each
attribute value having associated one or many attributes. It can
be defined as follows, using EBNF - Extended Backus-Naur
Form from [22] without capital letter / lower case letter
regular expression distinction:

[1] avt ::= ('{' S? label ':' S? attribute+ S? '}') | ('{' S? label S?

'}') | ('{' S? attribute+ '}') | (attribute+)

“We”

@r1@

“provide”

@r2@

“advice”

@r2@

“practical”

@r2@

“for”

@r5@

1 2

@r6@

“and”

“system” “admin”

@r2@

“group”

@r8@

“working”

<......>

"......"

Non-terminal

Terminal

%......% Pseudo-terminal

#......# Action (procedure)

@...@ Governor /
Subordinate relation

@...@

1 2
Coordinate relation

Link

[2] attribute ::= '[' S? <attribute content> S? ']'
[3] <attribute content> ::= (label ':' S? featureContent) |

featureContent | label
[4] featureContent ::= attributeName S? '=' S?

attributeValueList
[5] attributeValueList ::= attributeValueElement (S? ',' S?

attributeValueElement)*
[6] attributeValueElement ::= attributeValueName (S? avt)*
[7] attributeValueName ::= label (S label)*
[8] label ::= labelChar (label)*
[9] labelChar ::= '_' | '-' | '.' | 'A' | 'B' | 'C' | 'D' | 'E' | 'F' | 'G' | 'H' |

'I' | 'J' | 'K' | 'L' | 'M' | 'N' | 'O' | 'P' | 'Q' | 'R' | 'S' | 'T' | 'U' | 'V'
| 'W' | 'X' | 'Y' | 'Z' | 'a' | 'b' | 'c' | 'd' | 'e' | 'f' | 'g' | 'h' | 'i' | 'j' | 'k'
| 'l' | 'm' | 'n' | 'o' | 'p' | 'q' | 'r' | 's' | 't' | 'u' | 'v' | 'w' | 'x' | 'y' | 'z' |
'0' | '1' | '2' | '3' | '4' | '5' | '6' | '7' | '8' | '9'

[10] S ::= (#x20 | #x9 | #xD | #xA)+

Here S is any sequences of space, new line, carriage
return or line feed characters.

We can see that in the description of an AVT we can use
some labels that define some sub trees: labels for attributes
lists (rule [1]) and labels for attribute content (rule [3]). These
labels can be used in others parts of the tree and in this
manner the tree is represented more compact.

A more formal definition of an AVT is given in [9]. The
AVTs have different useful properties like: paths in the AVT,
EC (Exclusive Combinations) in the AVT, equivalence, well
formed AVT, ordering, intersection, difference, union,
factoring, normalization, unifiability, unification. Among
these properties, unifiability and the unification are the most
important. They are used in the generation process for
generative dependency grammar with features (see section
III.D).

C. Generative Dependency Grammar
A generative dependency grammar is an 8-tuple GDG =

{N, T, P, A, SR, CR, nt0, R} where:
- N, T, P, A, SR, CR are defined like in section III.A.
- nt0 - belongs to N and is named root symbol.

- R - is the set of numbered rules of the form (i) ni ::=(pi,
qi), ni ∈ N, pi is a sequence of elements from N ∪ T ∪ P
∪ A, qi is a dependency tree having nodes from pi and
oriented links (relations) from SR ∪ CR.

In a GDG we can make generation that will build in the

same time surface texts and dependency trees.
We give in the following an example of a grammar that can

generate a phrase like:
“We provide practical advice for system and working group

administrators.”

(1) <phrase> ::= (<nominal group> <verbal group>,

<nominal group>(r1 (<verbal group>())))
(2) <nominal group> ::= (“we”, “we”())
(3) <verbal group> ::= (<verb> <complement>

<complement’>,
<verb>(r2(<complement>()), r3(<complement’>())))

(4) <complement> ::= (<attribute> <noun>,
<noun>(r4(<attribute>())))

(5) <complement> ::= (“for” <coordination>, “for”(
<coordination>()))

(6) <coordination> ::= (<member> “and” <member’>,
r5(<member>(), <member’>() / r6(“and”())))

(7) <member> ::= (<noun>, <noun>())
(8) <member> ::= (<attribute> <noun>, <noun>(r7(

<attribute>())))
(9) <attribute> ::= (<attribute> <noun>,<noun>(r8(

<attribute>())))
(10) <attribute> ::= (<noun>, <noun>())
(11) <attribute> ::= (<adjective>, <adjective>())
(12) <attribute> ::= (“practical”, “practical”())
(13) <verb> ::= (“provide”, “provide”())
(14) <noun> ::= (“advice”, “advice”())
(15) <noun> ::= (“system”, “system”())
(16) <noun> ::= (“administrator”, “administrator”())
(17) <noun> ::= (“group”, “group” ())
(18) <adjective> ::= (“working”, “working”())

Using this grammar we can generate the surface text as
follows:

(19)(1, 2) <phrase> ::= (“we” <verbal group>,

“we”(r1(<verbal group>())))
(20)(19,3) <phrase> ::= (“we” <verb> <complement>

<complement’>,
“we”(r1(<verb> (r2(<complement>()),
 r3 (<complement’>()))))

(21)(20,13) <phrase> ::= (“we” “provide” <complement>
<complement’>,
“we”(r1(“provide”(r2(<complement>()),
r3(<complement’>()))))

(22)(21,4) <phrase> ::= (“we” “provide” <attribute> <noun>
<complement’>,
“we”(r1(“provide”(r2(<noun>(r4(<attribute>()))),
r3(<complement’>()))))

(23)(22,5) <phrase> ::= (“we” “provide” <attribute> <noun>
“for” <coordination>,
“we”(r1(“provide”(r2(<noun>(r4(<attribute>()))),
r3(“for”(<coordination>())))))

(24)(23,12) <phrase> ::= (“we” “provide” “practical <noun>
“for” <coordination>,
“we”(r1(“provide”(r2(<noun>(r4(“practical”()))),
r3(“for”(<coordination> ())))))

(25)(24,14) <phrase> ::= (“we” “provide” “practical”
“advice” “for” <coordination>,
“we”(r1(“provide”(r2(“advice”(r4(“practical”()))),
r3(“for”(<coordination> ())))))

(26)(25,6) <phrase> ::= (“we” “provide” “practical” “advice”
“for” <member> “and” <member’>,
“we”(r1(“provide”(r2(“advice”(r4(“practical”()))),
r3(“for”(r5 (<member>(),
<member’>() / r6(“and”())))))))

(27)(26,7) <phrase> ::= (“we” “provide” “practical” “advice”
“for” <noun> “and” <member’>,
“we”(r1(“provide”(r2(“advice”(r4(“practical”()))),
r3(“for”(r5 (<noun>(),

<member’>() / r6(“and” ())))))))
(28)(27,15) <phrase> ::= (“we” “provide” “practical”

“advice” “for” “system” “and” <member’>,
“we”(r1(“provide”(r2(“advice”(r4(“practical”()))),
r3(“for”(r5 (“system”(),
<member’>() / r6(“and”())))))))

(29)(28,8) <phrase> ::= (“we” “provide” “practical” “advice”
“for” “system” “and” <attribute> <noun>,
“we”(r1(“provide”(r2(“advice”(r4(“practical”()))),
r3(“for”(r5(“system”(),
<noun>(r7(<attribute>())) / r6(“and”())))))))

(30)(29,16) <phrase> ::= (“we” “provide” “practical”
“advice” “for” “system” “and” <attribute>
“administrator”,
“we”(r1(“provide”(r2(“advice”(r4(“practical”()))),
r3(“for”(r5(“system”(),
“administrator”(r7(<attribute>())) / r6(“and”())))))))

(31)(29,9) <phrase> ::= (“we” “provide” “practical” “advice”
“for” “system” “and” <attribute> <noun> “administrator”,
“we”(r1(“provide”(r2(“advice”(r4(“practical”()))),
r3(“for”(r5(“system”(),
“administrator”(r7(<noun>(r8(<attribute>())))) / r6(
“and”())))))))

(32)(31,17) <phrase> ::= (“we” “provide” “practical”
“advice” “for” “system” “and” <attribute> “group”
“administrator”,
“we”(r1(“provide”(r2(“advice”(r4(“practical”()))),
r3(“for”(r5(“system”(),
“administrator”(r7(“group”(r8(<attribute>())))) / r6(
“and”())))))))

(33)(32,11) <phrase> ::= (“we” “provide” “practical”
“advice” “for” “system” “and” <adjective> “group”
“administrator”,
“we”(r1(“provide”(r2(“advice”(r4(“practical”()))),
r3(“for”(r5(“system”(),
“administrator”(r7(“group”(r8(<adjective>())))) / r6(
“and”())))))))

(34)(33,18) <phrase> ::= (“we” “provide” “practical”
“advice” “for” “system” “and” “working” “group”
“administrator”,
“we”(r1(“provide”(r2(“advice”(r4(“practical”()))),
r3(“for”(r5(“system”(),
“administrator”(r7(“group”(r8(“working”())))) / r6(
“and”())))))))

The final production we obtained contains in the left side of

the right side the surface text and in the right side of the right
side the dependency tree (represented in Fig. 2).

The GDG allows obtaining a structure from an unstructured
text. This structure can be used in different purposes, for
example in translation process, in defining correspondences
between two languages [7].

D. General Dependency Grammar with Features
A GDG with feature structure is a GDG where each ntpa

can have associated an AVT. The AVT associated with the
non-terminal from the left side of the rules have always only
indexed attributes.

Example
Let us have the next phrase in Romanian language: “Ploile

(the rains) văratice (of summer) sunt (are) călduţe
(lukewarm)” that means “The summer rains are lukewarm”.
We will not use all the grammatical categories involved in the
analysis of this phrase but only few as an illustration.

Usually, the phrase to be analyzed is first of all annotated
i.e. each word will have attached his lemma and a particular
AVT (that have only one value for each attribute). Each word
can have many interpretations. For example “sunt” can
represent the third person plural (are) or the first person
singular (am). Though, for the sake of simplicity, we will
consider only one interpretation for each word.

The annotated phrase will be:
“Ploile” ploaia [class = noun] [gender = feminine] [number

= plural] “văratice” văratic [class = adjective] [gender =
feminine] [number = plural] “sunt” (a) fi [class = verb]
[person: III] [number = plural] [mode = indicative] [voice =
active] [time = present] “călduţe” călduţ [class = adjective]
[gender = feminine] [number = plural]

We marked the lemmas using italics.
A GDG with features that can generate this phrase can be as

follows:
(1) <phrase> ::= (<nominal group> [gender = masculine,

feminine, neuter] [number = singular, plural] [person = I,
II, III] <compound nominal predicate> [gender =
masculine, feminine, neuter] [number = singular, plural]
[person = I, II, III], <nominal group>(@r1@(
<compound nominal predicate> ())))

(2) <nominal group> [gender = masculine, feminine, neuter]
[number = singular, plural] [person = I, II, III] ::=
(%noun% [class = noun] [gender = masculine, feminine,
neuter] [number = singular, plural] %adjective% [class =
adjective] [gender = masculine, feminine, neuter]
[number = singular, plural],
%noun%(@r2@(%adjective% ())))

(3) <compound nominal predicate>[gender = masculine,
feminine, neuter] [number = singular, plural] [person = I,
II, III] ::= (%verb% [class = verb] [gender = masculine,
feminine, neuter] [number = singular, plural] [mode =
indicative] [voice = active] [time = present, future,
imperfect past] %adjective% [class = adjective] [gender =
masculine, feminine, neuter] [number = singular, plural],
%verb%(@r3@(%adjective% ())))

As we can see, we used pseudo terminals for nouns, verbs,

adjectives, so this grammar can generate a set of phrases.

IV. NATURAL LANGUAGE SYNTAX DESCRIPTION IN GRAALAN

A. General Structure
The description of the syntax in GRAALAN [8] [10] will

use GDG and AVT presented in section III. The language
where we are describing the syntax must respect the following
conditions:

a) Syntax: The description language will allow the
description in a detailed and compact form of the manner to

combine words in phrases respecting the rules of a natural
language grammar.

b) Dependencies: We accept here that the dependency
aspects are reduced to the mode different parts of a phrase are
in relation one another (coordinate and governor/subordinate
relations).

c) Agreement: By agreement [5] we will understand the
mode different part of speech “match” one another when they
are in certain dependency relations from the point of view of
the values of different morphologic or syntactic categories.

d) Errors: The natural language syntax description must
allow indicating the errors (at least the most frequent ones)
that can be found in phrases. The bad built phrases must be
recognized (in a certain measure) and marked as being
incorrect.

e) Reversibility: By reversibility we will understand the
property of the description language to be used to convert a
source (surface) text in a deep structure (the dependency tree,
in our case) and to convert the deep structure into the surface
text.

We will give here an informal definition of natural
language syntax description in GRAALAN. A more detailed
definition of natural language syntax description in
GRAALAN is given in the next sections.

A GRAALAN syntax description is a sequence of labeled
rules. A rule has two parts: the left part and the right part. The
left part of a rule contains a non terminal and an AVT. The
AVT contains syntactic / morphologic categories with their
values. The right part of a rule contains one or many
Alternants. An alternant is formed by a set of subsections: the
syntactic subsection, the dependency subsection and the
agreement subsection.

a) The syntactic subsection is a sequence of (eventually
labeled) one or many NTPAs. Each NTPA can have
associated information about how this NTPA is linked with
others NTPA by certain relations from the dependency
subsection (these relations are indicated by their labels in the
dependency subsection). There are three lists concerning the
relations: coordinated list (CL), subordinated list (SL) and
government list (GL).

Each NTPA can have associated an AVT describing
syntactic / morphologic categories with their values.

b) The dependency subsection contains the description of
the relations between the NTPA from the syntactic subsection
(referred by their labels). There are two types of relations:

The subordinate relation SR is a relation between two N, T,
P, A, or a coordinate relation CR. One of the two elements is
considered to be the governor (that governs by SR) and the
other the subordinate (that is governed by SR).

The coordinate relation CR is a relation between (usually)
two N, T, P, A (that are said to be coordinated by CR), and
eventually one or many SR (by which the CR is considered to
be a governor for others N, T, P, A, or CR).

c) The agreement subsection contains a list of agreement
rules. An agreement rule is a conditional expression expressed
between the categories values of the NTPAs from the

syntactic subsection. It can indicate some actions like error
messages or how the analyze will be continued after an
agreement error is found.

Fig. 3. Syntax rule elements

B. Graalan Syntactic Section Header
The syntactic section of a GRAALAN description is a

sequence of rules preceded by a header. The description of the
header in EBNF is the following:

[1] syntaxSection ::= 'Section' S 'syntax' S sectionHeader

syntax S 'end' S 'of' S 'section'
[2] sectionHeader ::= (sourceLanguage,

exploitationLanguage, sourceDirection,
exploitationDirection)

A header is formed by elements that refer the source

language and exploitation language.

[3] S ::= (#x20 | #x9 | #xD | #xA)+

Here S is any sequences of spaces, new line, carriage
return or line feed characters.

[4] sourceLanguage ::= 'Source' S 'language' S language S
[5] exploitationLanguage ::= 'Exploitation' S 'language' S

language S
[6] sourceDirection ::= 'Source' S 'direction' S ('left' | 'right')

- agreement
rules with
condition
expressions and
actions

Agr.
sub-
section

Alt. 2

Alt. 3

Alt. 1

Synt.
sub-
section

Dep.
sub-
section

<N> CL/SL/GL
[AVT]
“T” CL/SL/GL
[AVT]
%P% CL/SL/GL
[AVT]
#A# CL/SL/GL
[AVT]
@CR @
CL/SL/GL
@GR@ SL/GL

Alternant
sequence

Grammar Rule

Right part Left part

=> <non
terminal>
[AVT]

[7] exploitationDirection ::= 'Exploitation' S 'direction' S ('left'
|'right')

[8] language ::= ('RUM' | 'FRA' | 'FRA' | 'SPA' | 'RUS, ...')

We understand by direction the mode to scan the source
text: right - the scan is done from left to right; left - the scan is
done from right to left. The language is indicated according to
[15].

[9] syntax ::= (rule S)+
[10] rule ::= 'Rule' S label ':' S '<' S? name S? '>' S? attribute*

S? '::=' S? (('Alternant' S label ':' S? alternantContent)+ |
('Alternant' S alternantContent))

The alternant labels must be unique in the rule.

[11] name ::= label (S label)*
[12] label ::= labelChar (label)*
[13] labelChar ::= '_' | '-' | '.' | 'A' | 'B' | 'C' | 'D' | 'E' | 'F' | 'G' | 'H'

| 'I' | 'J' | 'K' | 'L' | 'M' | 'N' | 'O' | 'P' | 'Q' | 'R' | 'S' | 'T' | 'U' |
'V' | 'W' | 'X' | 'Y' | 'Z' | 'a' | 'b' | 'c' | 'd' | 'e' | 'f' | 'g' | 'h' | 'i' | 'j'
| 'k' | 'l' | 'm' | 'n' | 'o' | 'p' | 'q' | 'r' | 's' | 't' | 'u' | 'v' | 'w' | 'x' | 'y' |
'z' | '0' | '1' | '2' | '3' | '4' | '5' | '6' | '7' | '8' | '9'

[14] alternantContent ::= (syntacticSubsection
((dependencySubsection agreementSubsection?) |
agreementSubsection)?)

An alternant can contain the three types of subsection

(syntactic, dependency and agreement) in different
combinations.

C. Syntactic Subsection
The syntactic subsection of a GRAALAN syntax rule

contains information about a set of NTPAs that must be found
in the analyzed / generated source text, in the corresponding
sequence. The description of the syntactic subsection in EBNF
is the following:

[15] syntacticSubsection ::= 'Syntax' S ((notRelationedNTPA

S tpaRelationalList*)+) | ((notRelationedNTPA S
nRelationalList*)+)

[16] notRelationedNTPA ::= (label ':' S?)? (('<' S? name S?
'>') | ('"' terminal '"') | ('%' S? name S? '%') | ('#' S?
label S? '#')) S attribute* (S ntpaBehaviour)*

[17] terminal ::= char (terminal)*
[18] char ::= &label; | &code;|...

Here char can be &label; or &code; or any character
defined in GRAALAN Alphabet section (not described in this
paper).

[19] code ::= '#x' hexaString
[20] hexaString ::= hexaChar (hexaString)*
[21] hexaChar ::= '0' | '1' | '2' | '3' | '4' | '5' | '6' | '7' | '8' | '9' | 'a' |

'b' | 'c' | 'd' | 'e' | 'f' | 'A' | 'B' | 'C' | 'D' | 'E' | 'F'
[22] ntpaBehaviour ::= ntpaBehaviourElement (S

ntpaBehaviourElement)*

[23] ntpaBehaviourElement ::= '!' | (('OK' | 'KO') S? '=' S? (
'OK' | 'KO')) | ('Message' S? = S? label) | ('Context' S?
= S? '(' S? label (S label)* S? ')'))

Each element from ntpaBehaviourElement that

characterises the NTPA behavior can appear only once in an
ntpaBehaviour.

An NTPA that is head can have associated a feature named
“cut” and indicated by “!”. This means that the head loses the
characteristic of head. The corresponding NTPA will not have
relations with other NTPAs. The grammar must be written in
order to obtain a connected dependency tree. One alternant
will have only one head. When we use another rule to
substitute a non terminal in the current alternant, the different
links of the substituted non-terminal will be applied to the
head of the used rule.

The others elements that appear in ntpaBehaviourElement
form the error sequence. In such a sequence the Message is
mandatory. The error message itself is indicated by a label
that defines the error text in another GRAALAN section (the
GRAALAN Message Section that is not presented in this
paper).

The condition ('OK' | 'KO') S? '=' S? ('OK' | 'KO') indicates
the error triggering. The left of “=” indicates how NTPA
treatment is terminated and the right side of “=” indicates the
error condition, see Table II.

TABLE II

ERROR TRIGGERING FOR A NTPA
How NTPA treatment
is terminated

Error
condition

Continue as it
was not an error

OK OK Yes (i)
OK KO No
KO KO Yes(ii)
KO OK No

The two cases when the treatment is continued as it were

not an error has the following significance:
i) We found an error but this error is described as it was

correct.
Example

(A simplified description.)

<imperative phrase>::=

<vocative nominal group> "," <imperative verbal group>
"!"|

<vocative nominal group> <imperative verbal group >"!"

The first alternant corresponds to a phrase of the form (in

Romanian):
"Domnilor, vorbiţi mai încet !" (Gentlemen, shut up!)

(with a comma after the vocative).
The second alternant corresponds to a phrase of the form

(in Romanian):
"Domnilor vorbiţi mai încet!" (Gentlemen shut up!)

(without a comma after the vocative, therefore incorrect).
Though we have an error, the sense remains clear.

During the analysis of this incorrect phrase, the second
alternant will return an OK value after the terminal "!". If we
attach in the second alternant an error condition we will can
indicated the error apparition:

Rule R1: <imperative phrase>::=

Alternant A1:
Syntax

Label1:<vocative nominal group>
Coordinate Label5(1)

Label2: ","!
Label3: <imperative verbal group>

Coordinate Label5(2)
Label4: “!”!

Dependencies
Label5: @vocative relation@(2)

Alternant A2:
Syntax

Label1: <vocative nominal group>
Coordinate Label4(1)

Label2: <imperative verbal group>
OK = OK Message =

ErrorMessage
Coordinate Label4(2)

Label3: "!"!
Dependencies

Label4: @vocative relation@(2)

ii) There are situations when an NTPA must return OK but,

if it returns KO, we have an error that must be identified as it
is. Let us suppose a grammar fragment that must recognize
phrases formed by a verbal group or by two verbal groups
linked by “and”.
(A simplified description.)

<phrase>::= <nominal group> <verbal group>"."|

<nominal group><verbal group> "and"<verbal group>"."

In such a grammar, after an “and” was detected, a <verbal
group> must be found. We can attach to the non terminal
<verbal group> that is written after “and” an error sequence
that must be triggered to KO return by this non terminal
(giving an error message). A phrase like “He came and.” must
produce this error message

The (simplified) description could be, for example:

Rule R1: <phrase>::=

Alternant A1: <nominal group> <verbal group> "."
Alternant A2: <nominal group> <verbal group> "and"

<verbal group> KO = OK Message =
Error101

"."

A more detailed description:

Rule R1 <phrase>::=
Alternant A1:

Syntax

Label1: <nominal group> Governor Label4
Label2: <verbal group> Subordinate Label4
Label3: "."!

Dependencies
Label4: @nominal / verbal relation@

Alternant A2:
Syntax

Label1: <nominal group> Governor Label7
Label2: <verbal group> Coordinate

Label6(1)
Label3: "and"!
Label4: <verbal group>

KO = OK Message = Error101
Coordinate Label6(2)

Label5 "."!
Dependencies

Label6: @”and” coordination@(2)
Subordinate Label7

Label7: @nominal / verbal relation@

[24] tpaRelationalList ::= ('Governor' S labelList) | (

'Subordinate' S labelList) | ('Coordinate' label S? '(' S? (
'1’ | '2' S?) ')')

[25] nRelationalList ::= ('Governor' S labelList) | (
'Subordinate' S labelList) | ('Coordinate' label S? '(' S? (
'1’ | '2' S?) ')') | ('External' labelList)

[26] labelList ::= label (S label)*

A NTPA with relations is an NTPA that is linked with other
NTPAs by relations (governor, subordinate, coordinate).

The Subordinate list of an NTPA can contain only the label
of a Subordinate relation from the Dependency subsection.

The Coordinate list of an NTPA can contain only one label
of a coordinate relation (that will be referred on a fixed entry)
from Dependency subsection.

The Governor list of an NTPA can contain one or many
labels of subordinate relations from the Dependency
subsection.

For the same NTPA: the Subordinate list and Governor list
can coexist, the Governor list and the Coordinate list can
coexist, and the Subordinate list and the Coordinate list are
exclusive.

The External list of can appear only for a nonterminal. It
refers relations from Dependency subsection that appear wit
the attribute Definition or Reference [6]. We must respect the
discipline that, in the process of applying the rules (the
generation of a new rule from two rules) always the external
“definition” must appear before the corresponding external
“reference”. An external definition can appear only in a
relational list of a non terminal, because only a non terminal
can carry them further to someone that needs it.

D. Dependency Subsection
The dependency subsection of an alternant contains

information about the relations that are defined between the
NTPAs from the syntactic subsection of the alternant. The
description of the dependency subsection in EBNF is the
following:

[27] dependencySubsection ::= 'Dependencies' S

(coordinateRelation | subordinateRelation)+
[28] coordinateRelation ::= label ':' S? ((('Reference' S) | (

'Definition' ' S ')) ? '@' S? name S? '@' S? '(' S? '2' S? ')'
(S? '!')? (('Subordinate' S label)? | ('Coordinate' S label
S? '(' S? ('1' | '2') S? ')')?) ('Governor' (S label) | (S
label S? '(' S? ('1' | '2') S? ')')+)?

A coordinate relation label must be unique among the

alternant labels.
The 'Reference' key word indicates (if present) that the

current coordinate relation is not defined in the current rule
but it is referred from another rule.

The 'Definition' key word indicates (if present) that the
current coordinate relation is defined in the current rule and it
will be referred from other rules.

A coordinate relation can be followed by cut (“!”) because
a coordinate relation can be head and using cut this feature
will be discarded.

The Subordinate list of a coordinate relation can contain
only one label of a subordinate relation from Dependency
subsection.

The Coordinate list of a coordinate relation can contain
only one label of a coordinate relation from Dependency
subsection (referred on a fixed entry).

The Governor list of a coordinate relation can contain one
or more labels of governor / subordinate relation from
Dependency subsection. The current coordinate relation can
be:

- governor for other NTPAs or coordinate relations (using a
governor / subordinate relation indicated by a label not
followed by a number in parenthesis); this means that the links
from these governor / subordinate relations will come on the
current coordinate relation on supplementary inputs);

- “governor” for other NTPAs or coordinate relations (using
a label followed by a number of a fixed entry); this means that
the links from these NTPAs or coordinate relations will
appear on the corresponding fixed entry of the current
coordinate relation.

For the same coordinate relation: the Subordinate list and
the Coordinate list are exclusive and each of them can coexist
with Governor list.

[29] subordinateRelation ::= label ':' S? ((('Reference' S) | (

'Definition' ' S ')) ? '@' S? name S? '@' (('Subordinate' S
label)? , ('Governor' S label)?)

A subordinate relation label must be unique among the

alternant labels.
A subordinate relation has always one entry; so, we do not

need to specify the number of entries. In fact, the presence of
the entry number in coordinate relation indicates the fact that
it is a coordinate relation.

The 'Reference' and 'Definition' key words have the same
significance as for coordinateRelation.

The Subordinate list of a subordinate relation can contain
only one label of a coordinate relation from the Dependency
subsection (where it will go on a supplementary input) or of
an NTPA from the Syntax subsection.

The Governor list of a subordinate relation contains only
one label of an NTPA from the Syntax subsection or of a
coordinate relation from the Dependency subsection.

Observation 1: Because a link has two extremities, it can
be indicated by the any of its ends or by both. There are many
ways to indicate a link according to its type. It is advisable to
make the grammar description in such a way that a link appear
only once (to the element from where the link leaves or to the
element where the link arrives). See TABLE III where we use
the notations:

GR = Governor/Subordinate Relation
CR = Coordinate relation
SL = Subordinate List
GL = Governor List
CL = Coordinate List

TABLE III
INDICATION OF LINKS

How the link is indicated Link
type

Link
source
(label

A)

Link
target
(label

B)

1 2

1 NTPA GR B in SL of A A in GL of
B.

2 NTPA CR (on
fixed
entry)

B in CL of A
(with fixed
entry number
of B)

A in GL of
B (with
fixed entry
of B)

3 GR NTPA B in SL of A A in GL of
B

4 GR CR (on
supp.
entry)

B in SL of A A in GL of
B

5 CR GR B in SL of A A in GL of
B

6 CR CR (on
fixed
entry

B in CL of A
(with fixed
entry number
of B)

A in GL of
B (with
fixed entry
number of
B)

Observation 2: In the Table IV it is indicated that we can

put in different relational lists function of the element that the
list belongs to.

Example

… ::= …<non terminal 1>
{Sequence:

(gender = masculine, feminine, neutral)
(number = singular, plural)}

<non terminal 2> {Sequence}
<non terminal 3> {Sequence}

TABLE IV
THE RELATIONAL LIST CONTENT

List
type

List
owner

List content

NTPA The labels of one or many governor /
subordinate relations that have outputs
going to the current NTPA.

GR The label of a coordinate relation or of an
NTPA that have outputs going on the
input of the current governor /
subordinate relation.

GL

CR The labels of one or many governor /
subordinate relation (that have outputs
going to the supplementary input of the
current coordinate relation) and / or
labels of some NTPAs or other
coordinate relation that have outputs
going on fixed entries of the current
coordinate relation. In this case, the
corresponding number of fixed entry is
indicated too.

NTPA The label of only one governor /
subordinate relation that have an input
where the output of the current NTPA
goes.

GR The label of a coordinate relation (where
the output of the current governor /
subordinate relation will go on a
supplementary input) or of an NTPA
(that have an entry where the output of
the current governor / subordinate
relation will go).

SL

CR The label of a governor / subordinate
relation that has an input where the
output of the current coordinate relation
will go.

NTPA The label of only one coordinating
relation (where the output of the current
NTPA will go on a fixed entry). In this
case the number of the fixed entry is also
indicated.

CL

CR The label of only one coordinating
relation (where the output of the current
coordinate relation will go on a fixed
entry). In this case the number of the
fixed entry is also indicated.

Fig. 4. The content of Governor, Subordinate and Coordinate lists

(GL, SL, CL)

[30] attribute ::= notIndexedAttribute | indexedAttribute | '{'

S? label ':' S? attribute+ S? '}' | '{' S? attribute+ S? '}' | '{'
S? label S? '}'

In this representation, the label of an attribute sequence

allows to compact the rule. If the same attribute sequence
appears many times in a rule (in the left side or in the
alternants from the right side), then the first apparition of the
sequence can be labeled and the following apparitions can be
indicated only by using this label. A label of an attribute
sequence must be unique in the current rule.

[31] notIndexedAttribute ::= '(' (((S? label ':' S?)?

attributeContent) | label) ')'
[32] indexedAttribute ::= '[' (((S? label ':' S?)?

attributeContent) | label) ']'
[33] attributeContent ::= category S? '=' S? categoryValue (S?

',' S? categoryValue)*

In this representation, the label of an attributeContent
allows to compact the rule. If the same attribute appears many
times in a rule (in the left side or in the alternants from the

NTPASL (1 elem.) CL (1 elem.)

RL (n elem.)

Obs.: SL and CL
are exclusive.

GR CR

GR

21

or

SL (1 elem.)

GL (1 elem.)

Obs.: GR has
not CL

CR
21 or

SL (1 elem.) CL (1 elem.)

GL (n elem.)
Obs.: SL and CL
are exclusive.

GR CR

GR

21

or

NTPA

GR

NTPACR
21

or

CR
2 1

right side), then its first apparition can be labeled and the
following apparitions can be indicated only by using this
label. A label of an attribute must be unique in the current
rule.

Example
… ::= …<non terminal 1>

(Gender1: gender = masculine, feminine,
neutral)

(Number1: number = singular, plural)
<non terminal 2>

(Gender2: gender = masculine, feminine)
(Number2: number = singular)

<non terminal 3>
(Gender1) (Number1)

<non terminal 4>
(Gender2) (Number2)

If an indexedAttribute contains a label then this label will

play the role of an index. If the indexedAttribute do not have a
label, then the category from attributeContent will play the
index role. In any cases, categoryValue from attributeContent
represent all the values that the index can take.

Example
Let us have a set of rules of the form:

<complex subjective group>

[person = I, II, III]
[number = sg, pl]
[gender = m, f, n]
::=
Alternant A1:

<unitary subjective group>
[person = I, II, III]
[number = sg, pl]
[gender = m, f, n]

Alternant A2:
<logical subjective group>
[person = I, II, III]
[number = sg, pl]
[gender = m, f, n]

Alternant A3:
<distributive subjective group>
[person = I, II, III]
[number = sg, pl]
[gender = m, f, n]

Alternant A4:
<correlative subjective group>
[person = I, II, III]
[number = sg, pl]
[gender = m, f, n

Considering the combinations for person, number and

gender, this rule represents in fact 18 rules.
Example
The same thing can be written more compact as follows:

<complex subjective group>

[e1: persoana = I, II, III]

[e2: number = sg, pl]
[e3: gen = m, f, n]
::=
Alternant A1:

<unitary subjective group> [e1][e2][e3]
Alternant A2:

<logical subjective group>[e1][e2][e3]
Alternant A3:

<distributive subjective group>[e1][e2][e3]
Alternant A4:

<correlative subjective group>[e1][e2][e3]

Example
A more important using of the indexing is when the

same category must serve as index in many ways in the same
alternant.

<non terminal1>

[e1: attribute1 = value11, value12, value13]
[e2: attribute2 = value21, value22]
[e3: attribute3 = value31, value32, value33]
::=
Alternant A1:

<non terminal2>[e1][e2][e3]
<non terminal3>
[e4: attribute1 = value11, value12, value13]
[e5: attribute2 = value21, value22, value23]
[e6: attribute3 = value31, value32, value33]
<non terminal4>[e4][e5][e6]

In this example, the attributes e1: attribute1, e2: attribute2,

e3: attribute3 are considered as indexes different from e4:
attribute1, e5: attribute2, e6: attribute3 (i.e., for example,
<non terminal1> and <non terminal2> must have the same
value for attribute1, <non terminal3> and <non terminal4>
must have the same value for attribute1 but the values for
attribute1 can be different in <non terminal1> and in <non
terminal3>, etc.)

[34] categoryValue ::= name S attribute*

We can see that a categoryValue can be followed by an
attribute sequence. In this way, a branching in an attribute
value tree is represented. A sequence of “category = value”
that pass by such branching points represents a path in the
AVT. The syntax must be written in such a way that a path do
not have many apparition of the same category.

E. Agreement Subsection
The agreement subsection of an alternant describes the

conditions that must be respected by the morphologic /
syntactic categories of the NTPA from the syntactic
subsection. The description of the agreement subsection in
EBNF is the following:

[35] agreementSubsection ::= 'Agreement' agreementRule+
[36] agreementRule ::= 'if' S? '(' S? conditionExpression S? ')'

S? alternatives+ ((S? 'else' S? '(' S? agreementRule S? ')'

S?) | (S? 'else' S? agreementRule S?) | (S? 'else' S? '('
S? actionList S? ')'))?

[37] alternatives ::= ('true' S? '(' S? expression S? ')') | ('false'
S? '(' S? expression S? ')') | ('not' S? 'applicable' S? '(' S?
expression S? ')') | ('not' S? 'determinated' 'S? (' S?
expression ')')

[38] expression ::= actionList | agreementRule

A conditionExpression can have one of the four truth
values. We will use a tetravalent logic that has the following
truth values: TRUE, FALSE, NOT APPLICABLE, NOT
DETERMINATE. Therefore, after 'if' S? '(' S?
conditionExpression S? ')' S? we must have a list of maximum
four alternatives and these alternatives must be different. If
some alternatives are missing, they can globally be treated
using else.

Example
Let us have the following sequence:

if (conditionExpression)
true(expression 1)
not applicable(expression 2)
else(expression 3)

Such an expression is read: "if conditionExpression is true

then execute expression1 and if conditionExpression is not
applicable then execute expression2 otherwise (i.e.
conditionExpression is false or not determinated) then execute
expression3”.

[39] conditionExpression ::= ('(' S? conditionExpression S? ')'

S? logicalOperator S? conditionExpression) | (S? '~' S?
'(' S? conditionExpression S? ')' S? logicalOperator S?
conditionExpression) | ('(' S? conditionExpression S? ')')
| ('~' S? '(' S? conditionExpression S? ')') |
(simpleExpression S? logicalOperator S?
simpleExpression) | simpleExpression

In order to formulate the logical value of the

conditionExpression we can use logicalOperators (including
the negation “~”), parenthesis and operands that are
simpleExpression.

[40] logicalOperator ::= 'and' | 'or'
[41] simpleExpression ::= ({operand} S? '+ S? {operand} S?

'<-' S? {operand}) | ({operand} S? '<-' S? {operand}) |
({operand} s? '->' S? {operand}S? '+' S? {operand}) |
({operand} S? '->' S? {operand})

[42] operand ::= label attribute+

An operand indicates an NTPA that is involved in the
agreement. The agreement is usually expressed between a
governor and a subordinate. Let us have the example: “Not
only the rain but also the wind corrode the cliffs.” Between
“Not only the rains but also the winds” as multiple subject
and “corrode” must be described an agreement. (We can also

describe a sort of agreement also between “not only” and “but
also” as two parts of a correlation.)

If we have a governor / subordinate relation, then the
operator representing the governor will be at left of “<-” or at
right of “->” (the arrow looks at the governor).

An expression of the form operand1 + operand2 <-
operand3 or operand3 ->operand1 + operand2 is read: “if
operand1 has some features a1 (attributes and values: a certain
gender, a certain number, etc.) and operand2 has certain
features a2 then the operand3 must have certain features a3.

An expression operand1 <- operand2 or operand2 ->
operand1 is read: “if operand1 has certain features a1 then
operand2 must have certain features a2”.

The operand contains a label of an NTPA (from the
syntactic subsection of the current alternant) involved in the
agreement and an attribute under the form of an AVT.

An AVT (indicated by attribute) of an operand must be
unifiable with the AVT associated to the corresponding NTPA
(indicated by label).

A simpleExpression is TRUE when all its operands have
AVTs unifiable with the corresponding AVT from the
syntactic subsection.

A simpleExpression is FALSE when the AVT
corresponding to the operands represented the governor is
unifiable with the corresponding AVT of NTPA from
syntactic subsection and those representing the subordinate
are not.

A simpleExpression is NOT APPLICABLE if at least one
of the operands representing the governor has a not unifiable
AVT.

(A value of NOT DETERMINED can appear only by the
evaluation of the conditionExpression containing simple
expressions.)

Example
Let us have two non terminals that appear in syntactic

subsection of an alternant:

Label1: <non terminal1> (a = av1, av2)

(b = bv1, bv2, bv3)
(c = cv1, cv2, cv3)

Label2: <non terminal2> (d = dv1, dv2)
(e = ev1, ev2, ev3)
(f = vf1, vf2, vf3)

Let us have the simple expression of the form:

Label1(a = av1, av2)(b = bv2, bv3) -> Label2(e =ev1, ev2)(f =
vf2)

During the syntactic analysis, after the current alternant was
analyzed and recognized in source text, <non terminal1> and
<non terminal2> will have only some of the above
attributes/values.

The operand Label1(a = av1, av2)(b = bv2, bv3) will be
unifiable with <non terminal1> when this one will have after
the syntactic analysis:

- the category a with the values av1 or av2;
- the category b with the values bv1 or bv3.
The operand Label2(e =ev1, ev2)(f = vf2) will be unifiable

with the <non terminal2> when this one will have after the
syntactic analysis:

- the category e with the values ev1 or ev2;
- the category f with the value vf2.

Example
Let us have two non terminals that appear in syntactic

subsection of an alternant:
Label1: <elementary nominal group>

(negation = affirmative, negative)
(person = I, II)
(number = singular)
(gender = masculine, feminine)

Label2: <verbal group>
(negation = affirmative, negative)
(person = I, II)
(number = singular)
(gender = masculine, feminine)

Let us have the expression of the form:

Label1(person = I) <- Label2(person = I)
or
Label1(persoana = II) <- Label2(person = II)

This expression will be TRUE when the non terminal with
the labels Label1 and Label2 will have the same person (I or
II).

Using the indexed representation of the attributes, the
expression can be written more compact:

Label1[person = I, II] <- Label2[person = I, II]

[43] actionList ::= action (S? ',' S? actionList)*
[44] action ::= ('Message' S? '=' S? label) | ('OK' | 'KO') |

('Context' S? = S? '(' S? label (S label)* S? ')')

The Message is an error message indicated by a label in
another GRAALAN section not described in this paper (where
messages in different languages can be found). This message
will be displayed during the syntactic analysis of a source text.

The mode OK | KO indicated how the current NTPA
situation must be treated:

- KO: negative;
- OK: positive.
Observation 3: An agreement rule between different

NTPAs of an alternant make sense only if all these NTPAs
have associated attributes with many values in the syntactic
subsection of the alternant. If the NTPAs have not attributes
or they have attributes but all the attributes have only one
value then the agreement problem is solved by the syntactic
description itself and we do not need an agreement rule.

The message Context is represented by the labels of
certain NTPA or relations that can be used in debugging
process.

Example
Let us take an agreement expression of the form:

if (Label1(person = I) -> Label2(person = I))

true (OK)
else (Message = Label3, OK)

It will be read: “If the NTPA with the label Label1 from

the syntactic subsection has the person I and the NTPA with
the label Label2 from syntactic subsection has the person I
then continue the syntactic analysis, otherwise display the
error message with the label Label3 (and that can be for
example defined in Message section of GRAALAN language
like: "Person number agreement error") and continue after that
the syntactic analysis as it was not an error.”

V. CONCLUSION
We presented a method to describe the syntax of a natural

language. The description mode is part of a more general
language GRAALAN that allows the description of a natural
language or the correspondences between two natural
languages. We consider that this kind of description is quite
general and fit for almost any natural language.

In order to use the description method, some tools are
needed [11]. Among these tools, a very important one is
GRAALAN compiler. This compiler analyzes the description
GRAALAN text and converts it to XML. The XML
information will form an LKB (Linguistic Knowledge Base).
The knowledge form LKB can afterwards be used to build
different linguistic applications: morphologic analyzer,
grammar checker, inflection application, indexing / searching
application, lemmatizer, speller, hyphenating application,
different kinds of lexicons and dictionaries, different kinds of
machine translation applications (human assisted machine
translation, computer assisted machine translation, automatic
machine translation), etc.

Some tools for GRAALAN are already developed
(GRAALAN Macro processor, GRAALAN Compiler,
Inflection Forms Tool that allows an automatic / interactive
generation of the inflected forms). Some tools are currently in
design / implementation stage (Lexicon Tool that allows an
automatic / interactive lexicon creation, LINK that checks the
coherence of an entire LKB). Some Romanian linguistic
knowledge bases are already defined (Alphabet Section,
Morphologic Configurator Section, Syllabification Section,
Inflection Rules Section), some are partially developed
(Lexicon Section, Syntax Section), some will be soon
developed (Inflection Forms Section).

We hope that the system built on GRAALAN will be an
important tool to elaborate some unified and very general
linguistic applications.

REFERENCES
[1] H. Alshawi, D. J. Arnold, R. Backofen, D. M. Carter, J. Lindop, K.

Netter, S. G. Pulman, J. Tsujii, H. Uszkoreit. EurotraET6/1: Rule

Formalism and Virtual Machine Study. Final Report. Commission of the
European Communities, 1991.

[2] R. Backofen et al. EAGLES Formalism Working Group Final Report.
Expert Advisory Group on Language Engineering Standards, 1996.

[3] S. Diaconescu. Natural Language Understanding Using Generative
Dependency Grammar. In: M. Bramer, A. Preece and F. Coenen (Eds),
Twenty second SGAI International Conference on Knowledge Based
Systems and Applied Artificial Intelligence, pp.439-452, Cambridge UK,
Springer, 2002.

[4] S. Diaconescu. Morphological Categorization Attribute Value Trees and
XML. In: M. A. Klopotek, S. T. Wierzchon, K. Trojanowski (Eds),
Intelligent Information Processing and Web Mining, Proceedings of the
International IIS: IIPWM’03 Conference, pp. 131-138, Zakopane,
Poland, Springer, 2003.

[5] S. Diaconescu. Natural Language Agreement Description for Reversible
Grammars. In: T. D. Gedeon, L. C. C. Fung (Eds.), Advances in
Artificial Intelligence, 16th Australian Conference on AI, pp. 161-172,
Perth, Australia, Springer, 2003.

[6] S. Diaconescu. Natural Language Processing Using Generative Indirect
Dependency Grammar. In: M. A. Klopotek, S. T. Wierzchon, K.
Trojanowski (Eds), Intelligent Information Processing and Web Mining,
Proceedings of the International IIS, IIPWM’04 Conference, pp. 414-
418, Zakopane, Poland, Springer, 2004.

[7] S. Diaconescu. Multiword Expression Translation Using Generative
Dependency Grammar. In: J. L. Vicedo, P. Martinez-Barco, R. Muñoz,
M. S. Noeda (Eds.), Advances in Natural Language Processing,
Proceedings of 4th International Conference, ESTAL 2004, pp. 243-254,
Alicante, Spain, Springer, 2004.

[8] S. Diaconescu. GRAALAN – Grammar Abstract Language Basics. In: J.
M. Jun, B. M. Bae, K. Y. Lee (Eds) GESTS International Transaction on
Computer Science and Engineering, Vol.10, No.1: Sunjin Publishing
Co., 2005.

[9] S. Diaconescu. Some Properties of the Attribute Value Trees Used for
Linguistic Knowledge Representation. In: 2nd Indian International
Conference on Artificial Intelligence (IICAI-05), Pune, INDIA, 2005.

[10] S. Diaconescu. Creation of the linguistic resources using a specialised
language. (Crearea resurselor lingvistice cu ajutorul unui limbaj

specializat), In C. Forăscu, D. Tufiş, D. Cristea (Eds.), Workshop on
Linguistic resources and tools for Romanian Language Processing, pp.
39-44, Iassi, Romania, Editura Universităţii A. I. Cuza, 2006.

[11] S. Diaconescu. Complex Natural Language Processing System
Architecture. In: Corneliu Burileanu, Horia-Nicolai Teodorescu (Eds.),
Advances in Spoken Language Technology, pp. 228-240, Bucharest,
Romania: The Publishing House of the Romanian Academy, 2007.

[12] EAGLES Formalism Working Group Final Report, Version of
september 1996.

[13] IPA International Phonetic Association. Handbook of the International
Phonetic Association, A Guide to the Use of the International Phonetic
Alphabet. Cambridge, UK: Cambridge University Press, 2005.

[14] ISO/IEC 10646. Information technology -- Universal Multiple-Octet
Coded Character Set (UCS). Geneva, International Organization for
Standardization, 1992.

[15] ISO 639 (E). Code for the representation of names of languages.
Geneva, International Organization for Standardization, 1998.

[16] A. Joshi, L. Levi, L. Takabashi. Tree Adjunct Grammars. Journal of the
Computer and System Sciences, 1975.

[17] C. Pollard, I. Sag. Head-Driven Phrase Structure Grammar. Stanford:
CSLI & Chicago: U Chicago Press, 1994.

[18] S. Kahane. Grammaire d’Unification Sens-Texte. Vers un modèle
mathématique articulé de la langue. Document de synthèse, Paris,
France: Univ. Paris 7, 2002.

[19] R. Kaplan, J. Bresnan. Lexical Functional Grammar. A Formal System
for Grammatical Representation. In: J. Bresnan (ed), The Mental
Representation of Grammatical Relations: Massachusetts USA: MIT
Press, 1982

[20] J. Landsbergen. Isomorphic grammars and their use in the ROSETTA
translation system. In: Machine Translation Today: The State of the Art,
Edinburgh UK: Edinburgh University Press, 1987.

[21] L. Tesnière. Éléments de syntaxe structurelle, Paris France: Klincksieck,
1959.

[22] W3C. Extensible Markup Language (XML) 1.0, Recommendation. 10-
Feb-98, pp. 24-25, 1998.

