
Pre-conceptual Schema: a Conceptual-Graph-like

Knowledge Representation for Requirements Elicitation
*

Carlos Mario Zapata Jaramillo,
1
 Alexander Gelbukh,

2
 and Fernando Arango Isaza

 1

1 Universidad Nacional de Colombia, Facultad de Minas, Escuela de Sistemas
Carrera 80 No. 65-223 Of. M8-113, Medellín, Colombia
cmzapata@unal.edu.co, farango@unal.edu.co

2 Computing Research Center (CIC), National Polytechnic Institute,

Col. Zacatenco, 07738, DF, Mexico
www.Gelbukh.com

Abstract. A simple representation framework for ontological knowledge with
dynamic and deontic characteristics is presented. It represents structural rela-
tionships (is-a, part/whole), dynamic relationships (actions such as register,

pay, etc.), and conditional relationships (if-then-else). As a case study, we apply
our representation language to the task of requirements elicitation in software
engineering. We show how our pre-conceptual schemas can be obtained from
controlled natural language discourse and how these diagrams can be then con-
verted into standard UML diagrams. Thus our representation framework is
shown to be a useful intermediate step for obtaining UML diagrams from natu-
ral language discourse.

1 Introduction

Knowledge Representation (KR) has been applied in software development, in tasks
such as requirements elicitation, formal specification, etc. [1]. In requirements elicita-

tion, the Stakeholder’s discourse is transformed in software specifications by means

of a process that involves intervention of the Analyst. Some works in KR have been

made in representation of requirements, but there are still problems in Stakeholder

validation and dynamic features of the paradigms used for this goal.

Several paradigms have been used for KR, such as semantic networks, frames,

production rules, and predicate logic [1, 2]. In particular, Conceptual Graphs (CG) [3]

have been used for KR because of its logic formalism.

In this paper we present Pre-conceptual Schemas, a simple CG-like KR framework

motivated by the Requirements Elicitation task. On the one hand, these schemas can

be obtained from a controlled natural language discourse. On the other hand, we show

how to transform them to UML diagrams. Thus these schemas can be used for auto-
matic conversion of natural language discourse into UML diagrams.

* Work done under partial support of Mexican Government (SIP-IPN 20061299 and CONA-

CyT R420219-A, 50206) for the second author.

The paper is organized as follows. Section 2 presents an overview of KR. Section 3

discusses previous KR applications to Requirements Elicitation. Section 4 introduces

the Pre-conceptual Schemas as a KR framework. Section 5 presents a case study

based on Pre-conceptual Schemas in order to automatically acquire UML diagrams

and compares Pre-conceptual Schemas with CGs. Section 6 concludes the paper.

2 Overview of Knowledge Representation

Sowa [1] defined KR as “the application of logic and ontology to the task of con-

structing computable models for some domain”. In KR, a major concern is computa-

tional tractability of knowledge to reach automation and inference. The field of KR is

usually called “Knowledge Representation and Reasoning”, because KR formalisms

are useless without the ability to reason on them [1].
A comprehensive description of KR can be found in [1]; a discussion of relation-

ships between KR and Ontologies, in [2]. The major paradigms in KR are as follows.

− Semantic networks are used as a graphical paradigm, equivalent to some logical

paradigms. They are useful for hierarchical representation. Nowadays, a number of

graphs formalisms are based on the syntax of semantic networks, for example

Conceptual Graphs [3]. Semantic networks are unstructured.

− Frames are templates or structured arrays to be filled with information. Frames can

be considered as “structured” semantic networks, because they use data structures

to store all structural knowledge about a specific object in one place. Object-

oriented descriptions and class-subclass taxonomies are examples of frames.

− Production rules are hybrid procedural-declarative representations used in expert
systems; many declarative languages are based on this paradigm. The reasoning

process can be automatically traced in a controlled natural language [19].

− Predicate logic is based on mathematics and can be used as a reasoning mecha-

nism for checking the correctness of a group of expressions. Programming lan-

guages such as PROLOG are logic-based.

Sowa [1] discusses major KR formalisms such as rules, frames, semantic networks,

object-oriented languages (for example, Java), Prolog, SQL, Petri networks, and the

Knowledge Interchange Format (KIF). All these representations are based on one or

several of the mentioned paradigms. In particular, KIF has emerged as a standard

model for sharing information among knowledge-based applications. KIF is a lan-

guage designed to be used in knowledge exchange among disparate computer systems
(created by different programmers, at different times, in different languages, etc.) [4].

3 State-of-the-Art in KR-based Requirements Elicitation

According to Leite [5], “Requirements analysis is a process in which ‘what is to be
done’ is elicited and modelled. This process has to deal with different viewpoints, and

it uses a combination of methods, tools, and actors. The product of this process is a

model, from which a document, called requirements, is produced.” Requirements

Elicitation (RE) is a difficult step in the software development process. Viewpoints

reported by Leite are associated with several Stakeholders—people with some con-

cern in software development—and are difficult to collect for Analysts: Stakeholders

are committed with domain discourse, while Analysts are concerned with modelling

languages and technical knowledge. This is a cause for many miscommunication

problems.

Some RE projects have used KR for solving such miscommunication problems:

− Frames were employed by Cook et al. [6] for gathering information about RE

problems. The frames were used for communication purposes and Stakeholder

validation, but did not contribute to further automation in software development.

− Logical languages were used in ERAE [7, 8], RML [9, 10], Telos [11, 12], FRORL

[13], and PML [14] projects. These languages require technical training for their

use and elaboration, which Stakeholders do not have. Furthermore, KR languages

are used only for representation and inference. They are not used for conversion to

other standard specification formalisms, such as UML diagrams.

− Controlled English was used in CPE [15], ACE [16], and CLIE [17] projects.

Again, it is not converted to other standard specification formalisms.

− Conceptual Graphs were used by Delugach and Lampkin [18] to describe require-
ment specifications. However, they use technical terminology (like “object” or

“constraint”) that the Stakeholder usually misunderstands.

As far as CGs are concerned as KR language, there are other problems:

− They represent the specifications phrase-by-phrase. This can lead to the repetition

of a concept many times. To solve this problem, CG standard has proposed co-

reference lines, but complex concepts can be spread across many CGs, and their

behaviour can be difficult to validate.

− Their syntax can be ambiguous. Concepts can be either nouns or verbs or even

entire graphs. Relationships can be either thematic roles or comparison operators.

This can lead to multiple representations of the same phrase.

− They represent mainly structural information. For better expressiveness, we need a
schema capable of representing both structural and dynamic properties.

4 Pre-conceptual Schemas: CG-like Framework for Knowledge

Representation

Design Goals In order to solve the problems related to CGs mentioned in Section 3,

a KR approach to obtaining UML diagrams should meet the following conditions:

− Unambiguous rules must be provided. Precise rules may map words to only one

element of each resulting diagram.

− Automated translation from controlled language into a KR language and into UML

Diagrams is to be possible.

− Applicability to any domain is expected, no matter how specific the domain is.

− No pre-classification ontologies are to be used.

− Several UML diagrams should be obtainable from the same source.

− Use of a common KR formalism, no matter what the target diagram is.

− The KR formalism must be an integration of all the target diagrams.

Pre-conceptual Schemas are proposed as a KR formalism for automatically obtain-

ing of UML Diagrams that is aimed at satisfying these requirements.

The Term Pre-conceptual This term was coined by Heidegger [20], referring to a

previous knowledge about a concept. Piaget [21], in his Stage Theory, distinguishes a
pre-conceptual stage, at which children have a certain understanding of class mem-

bership and can divide their internal representations into classes.

In software development, Analyst builds Conceptual Schemas based on the Stake-

holder discourse. Analyst performs an analysis to find the ideas behind the discourse

and internally in his or her mind depicts something like a pre-concept of the Concep-

tual Schema. Following this idea, the proposed framework may build a KR descrip-

tion of the Stakeholder discourse. Thus the term Pre-conceptual Schema.

Syntax and Semantics Pre-conceptual Schemas (PS) use a notation reminiscent of
that of Conceptual Graphs (CG), with certain additional symbols representing dy-

namic properties. A Pre-conceptual Schema is a (not necessarily connected) labelled

digraph without loops and multiple arcs, composed of the nodes of four types con-

nected by the arcs of two types shown in Figure 1, with the following restrictions:

Topology

– A connection arc connects a concept to a relationship or vice versa.

– An implication arc connects a dynamic relationship or conditional to a dynamic

relationship.

– Every concept has an incident arc (which is of connection type, going to or from

a relationship).
– A dynamic relationship has exactly one incoming and one outgoing connection

arcs (incident to concepts; it can have any number of incident implication arcs).

– A structural relationship has exactly one incoming and one or more outgoing

arcs (of connection type, incident to concepts).

– A conditional has no incoming arcs and one or more outgoing arcs (of implica-

tion type, going into dynamic relationships).

Labels

– A connection arc has no labels.

– An implication arc has a label yes or no (if omitted, yes is assumed).

– A concept is labelled with a noun representing an entity of the modelled world.

Different concepts nodes have different labels.

Fig. 1. Syntactic elements of Pre-conceptual Schemas

– A dynamic relationship is labelled with an action verb, e.g., pay, register. Differ-

ent dynamic relationship nodes can have the same label.

– A structural relationship is labelled with a verb is or has.

– A conditional is labelled with a logical condition on values of certain concepts,

e.g., score > 3. A description of the formal language for expressing such condi-

tions is beyond the scope of this paper.

Semantics

– Connections express argument structure of relationships: roughly speaking, the

subject and the object of the corresponding verb. A concept can participate in

various relationships (secretary → prints → report, secretary → calls → client,

director → employs → secretary; here secretary is the same node).

– Concepts represent people (employee, secretary), things (document, bill), and

properties (address, phone). In requirement elicitation, one can very roughly

imagine them as what later might become dialog boxes shown to the user of the
given category or representing the given thing, or as fields in such boxes.

– Structural relationships express class hierarchy (secretary is an employee), prop-

erties (employee has phone), part-whole relationships (car has motor), etc. One

relationship node can only have one subject and one object (secretary → prints

→ report, accountant → prints → bill; these are two different print nodes). In

requirement elicitation, one can roughly imagine the properties as text field or

links on the dialog boxes corresponding to their owners.

– Dynamic relationships express actions that people can perform (secretary can

register the bill). In requirement elicitation, one can roughly imagine them as but-

tons that the users of the software can press to perform the corresponding actions.

– Conditionals represent prerequisites to perform an action. In requirements elicita-
tion, one can roughly imagine them as enabling or disabling the corresponding

buttons, depending on whether a condition is true (accountant can pay a bill after

the bill has been registered) or some another action has been performed (ac-

countant can pay a bill only if secretary has registered the bill).

– Implications arc has a label yes or no (if omitted, yes is assumed). It represents

logical implication between events.

Comparison of Pre-conceptual Schemas and Conceptual Graphs While the syn-

tax and semantics of Pre-conceptual schemes strongly resemble those of Conceptual

Graphs, there are some important differences.

− PS concepts differ from CG concepts in that CG concepts can be nouns, verbs or

graphs. PS concepts are restricted to nouns from the Stakeholder’s discourse.

− PS relationships differ from CG relationships in that the latter can be nouns (for
example, thematic roles), attributes, and operators. PS relationships are restricted to

verbs from the Stakeholder’s discourse. There are two kinds of PS relationships:

� Structural relationships (denoted by a solid line) correspond to structural verbs

or permanent relationships between concepts, such as to be and to have.

� Dynamic relationships (denoted by a dotted line) correspond to dynamic verbs

or temporal relationships between concepts, such as to register, to pay, etc.

− PS implications are cause-and-effect relationships between dynamic relationships.

− PS conditionals are preconditions—expressed in terms of concepts—that trigger

some dynamic relationship.

− PS connections are used in a similar way to CG connections: they can connect a

concept with a relationship and vice versa. Furthermore, PS connections can con-

nect a conditional with a dynamic relationship.

Some differences between PS and CG can be noted from Figures 3 and 4 below:

− The Conceptual Graph in Figure 4 is one of the possible CGs that can be obtained.

The syntax of CG can derive more than one representation. In contrast, PS in Fig-
ure 3 is the only possible representation that can be obtained from the given UN-

Lencep specification.

− Concepts are repeated in CG because every CG tries to represent a sentence. In PS,

a concept is unique and it is possible to find all the relationships it participates in.

− In CG, there is no difference between the concepts like assess and grade_mark,

because representation is the same in both cases. In PS, assess is a dynamic rela-

tionship, while grade_mark is a concept.

− In CG, verbs such as have and assess have the same representation (an agent and a

theme). In PS these verbs have different representations: have is a structural rela-

tionship and assess is a dynamic relationship.

− Stakeholder validation of the obtained PS is easier than CG validation, because
relationships like agent and theme are not present in UN-Lencep specification.

− If we use CG for representing Stakeholder’s discourse as in [18], we need words

like attribute and constraint, which belong to software discourse. In PS, we only

need words from the UN-Lencep specification.

UN-Lencep Language A subset of natural language, the Controlled Language

called UN-Lencep (acronym of a Spanish phrase for National University of Colom-

bia—Controlled Language for Pre-conceptual Schema Specification) is defined in

such a way that simplifies automatic obtaining of Pre-conceptual Schemas from a

discourse. Unrestricted natural language is very complex and has many linguistic

irregularities and phenomena difficult to tackle computationally—such as anaphora,

syntactic ambiguities, etc.—that make it difficult to obtain PS elements from a text.
However, if the Stakeholder is capable to express his or her ideas in a simpler subset

of natural language, PS can be directly obtained from such a discourse.

Figure 2 shows the basic syntax of UN-Lencep, and Table 1 shows equivalences

for the basic specification of UN-Lencep. In the table, the left-hand side column

shows the formal elements expressed by the controlled natural language expressions

shown in the right-hand side.

Rules for Obtaining UML Diagrams PS can be mapped in three UML diagrams:

Class, Communication, and State Machine diagrams. To achieve this goal, we define

14 rules based on PS elements. Space limitations do not allow us to discuss or even

list here all those rules, but following are some examples of such rules:

− A source concept from a HAS/HAVE relationship is a candidate class.

− The source set of concepts and relationships from an implication connection is a
candidate guard condition.

− Messages identified in communication diagrams—expressed in past participle—

are candidate states for target object class.

5 Automatically Obtaining UML Diagrams from UN-Lencep

Specifications using Pre-conceptual Schemas

In the following example, we define a UN-Lencep specification and construct the Pre-

conceptual Schema (Figure 3) and the Conceptual Graph representing the same dis-

Fig. 2. Basic Syntax of UN–Lencep

Table 1. Equivalences for basic specification of UN–Lencep

Formal construction Controlled natural language expression

A <IS> B
A is kind of B
A is a type of B

A is a sort of B
B is divided into A

A <HAS/HAVE> B

A includes B

A contains B
A possesses B
A is composed by B
A is formed by B
B belongs to A

B is part of A

B is included in A
B is contained in A
B is an element of A
B is a subset of A

<WHENEVER> A <R1> B, C <R2> D
if A <R1> B then C <R2> D
since A <R1> B, C <R2> D
after A <R1> B, C <R2> D

course (Figure 4). Then we apply the rules described in Section 4.4 for obtaining three

different UML diagrams (Figures 5 to 7). Here is an example of the discourse:

Student is a type of person.

Professor is a kind of person.

Professor has course.

Student belongs to course.

Fig. 3. PS of the example discourse.

Fig. 4. Conceptual Graph of the example discourse.

Agnt stands for Agent, Thme for Theme, Expr for Experiencer.

After student presents test, professor assess test.

If grade mark is greater than 3 then student passes course.

Grade mark belongs to test.

Fig. 5. Class Diagram obtained from PS

Fig. 6. Communication Diagram obtained from PS

Fig. 7. State Machine Diagrams obtained from PS

We have developed a CASE Tool named UNC-Diagrammer for constructing Pre-

conceptual Schemas and transforming them into Class, Communication, and State

Machine UML diagrams.

6 Conclusions and Future Work

We have presented a framework based in Pre-conceptual Schemas, a Conceptual-

Graph-like Knowledge Representation for automatically acquiring UML Diagrams

from controlled natural language discourse. Namely, PSs are obtained from

UN-Lencep, a controlled language for the specification of Pre-conceptual Schemas.

We have shown the use of this framework with an example. The obtained UML dia-

grams are consistent with respect to each other because they are obtained from the

same PS that represents the Stakeholder’s discourse expressed in UN-Lencep.
In comparison with Conceptual Graphs, Pre-conceptual Schemas have many ad-

vantages: unambiguous syntax, integration of concepts, dynamic elements, and prox-

imity to the Stakeholder language. Compared with other KR languages for require-

ments elicitation, PS are superior in that they do not require technical training from

the Stakeholder and there is a framework for automatically building UML diagrams.

Some work is still to be done to improve this KR formalism:

− Improvements to completeness of the rules to build more types of diagrams and

more elements of the existing diagrams;

− Integration of UN-Lencep into the UNC-Diagrammer CASE tool;

− Enrichment of UN-Lencep in order to make it closer to unrestricted natural lan-

guage;

− Enrichment of Pre-conceptual Schema syntax for including other linguistic ele-

ments, such as articles.

References

[1] Sowa, J.: Knowledge Representation: Logical, Philosophical, and Computational Founda-

tions. Brooks/Cole, Pacific Grove (2000).
[2] Brewster, Ch., O'Hara, K., Fuller, S., Wilks, Y., Franconi, E., Musen, M., Ellman, J., and

Shum, S.: Knowledge Representation with Ontologies: The Present and Future. IEEE In-
telligent Systems, vol. 19, No. 1 (2004) 72–81.

[3] Sowa, J. F.: Conceptual Structures: Information Processing in Mind and Machine. Addi-
son-Wesley Publishing Co., Reading (1984).

[4] Knowledge Interchange Format. Draft proposed American National Standard (dpANS)
NCITS.T2/98-004. logic.stanford.edu/kif/dpans.html

[5] Leite, J.: A survey on requirements analysis, Advanced Software Engineering Project.
Technical Report RTP-071, Department of Information and Computer Science, Univer-
sity of California at Irvine (1987).

[6] Cook S. C., Kasser J.E., and Asenstorfer J.: A Frame-Based Approach to Requirements
Engineering. Proc. of 11th International Symposium of the INCOSE, Melbourne (2001).

[7] Dubois, E., Hagelstein, J., Lahou, E., Ponsaert F., and Rifaut, A.: A Knowledge Repre-
sentation Language for Requirements Engineering. Proceedings of the IEEE, 74, 10
(1986) 1431–1444.

[8] Hagelstein, J.: Declarative Approach to Information Systems Requirements. Knowledge
Based Systems 1, 4 (1988) 211–220.

[9] Greenspan. S.: Requirements Modeling: A Knowledge Representation Approach to Soft-
ware Requirements Definition. PhD thesis, Dept. of Computer Science, University of To-
ronto (1984).

[10] Greenspan, S., Mylopoulos, J., and Borgida, A.: On Formal Requirements Modelling
Languages: RML Revisited. IEEE Computer Society Press, Proceedings of the Sixteenth
Intl. Conf. on Software Engineering, Sorrento (1994) 135–148.

[11] Mylopoulos, J., Borgida, A., Jarke, M., and Koubarakis, M.: Telos: Representing Knowl-
edge about Information Systems. Transactions on Information Systems 8, No. 4 (1990).
325–362.

[12] Jeusfeld, M.: Change Control in Deductive Object Bases. INFIX Pub, Bad Honnef
(1992).

[13] Tsai, J., Weigert, Th., and Jang, H.: A Hybrid Knowledge Representation as a Basis of
Requirement Specification and Specification Analysis. IEEE Transactions on Software
Engineering, 18, No. 12 (1992). 1076–1100.

[14] Ramos, J. J. PML–A modeling language for physical knowledge representation. Ph.D.

Thesis, Universitat Autònoma de Barcelona (2003).
[15] Pulman, S.: Controlled Language for Knowledge Representation. Proceedings of the First

International Workshop on Controlled Language Applications, Leuven (1996) 233–242.
[16] Fuchs, N. E. and Schwitter, R.: Attempto Controlled English (ACE). Proceedings of the

First International Workshop on Controlled Language Applications, Leuven (1996).
[17] Polajnar, T., Cunningham, H., Tablan, V. and Bontcheva, K.: Controlled Language IE

Components Version 1. EU–IST Integrated Project (IP) IST–2003–506826 SEKT, D2.2.1
Report, Sheffield (2006).

[18] Delugach, H. and Lampkin, B.: Acquiring Software Requirements As Conceptual
Graphs. Proceedings of the Fifth International Symposium on Requirements Engineering,
Los Alamitos (2001).

[19] Alonso-Lavernia, M., A. De-la-Cruz-Rivera, G. Sidorov. Generation of Natural Langua-

ge Explanations of Rules in an Expert System. LNCS N 3878, Springer, 2006, 311-314.
[20] Heidegger. M.: Protokoll zu einem Seminar über den Vortrag "Zeit und Sein". Zur Sache

des Denkens, Tübingen (1976) 34.

[21] Piaget, J.: The origins of intelligence in children (2nd ed.). New York: International Uni-
versities Press (1952).

