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Abstract Many tasks in natural language processing, such as machine translation, word sense disambiguation, word 

translation disambiguation, require analysis of contextual information. In case of supervised approaches this analysis is 

performed by human experts, which is very costly. Unsupervised approaches offer fully automatic methods to fulfill 

these tasks. Yet these methods are not robust, their results are very parameter-dependent and difficult to interpret. 

Context clustering is an unsupervised technique for analysis of context similarities. In this work we explore 

dependencies of context clustering results from various clustering parameters. We also explore suitability of the context 

clustering for word translation disambiguation by evaluating the clustering results against known classes that are classes 

of translation candidates.   

 

Keywords translation, translation candidates, clustering, unsupervised methods, parameter, word sense discrimination, 

context.   

Introduction  

In natural language processing word sense disambiguation is the task of automatic assignment of a correct 

sense from a predetermined sense inventory to a polysemous word. It is tightly related to the task of machine 

translation, where a correct translation of a word or phrase must be chosen from a list of translation 

candidates. Recently, the task of selection of the best translation or several interchangeable (synonymous) 

translations for a given source word in context and a set of target candidates has become known as word 

translation disambiguation. 

All these tasks require contextual information to resolve an ambiguity, albeit translational or semantic.   

In natural language processing approaches that involve a manually tagged training corpus that is further used 

for training of a machine-learning algorithm are known as supervised methods.  Methods that automatically 

learn from “raw” corpus are called unsupervised.  There are also approaches that are based on manually 

crafted rules or use existing dictionaries or heuristics that are known according to [1] can be described as 

knowledge-based approaches.   

In the past decade approaches to bootstrap machine translation with preliminary word sense disambiguation 

or word sense translation were explored in [23, 2-5]. These approaches are based on supervised WSD 

classifiers that require extensive training on a large manually tagged training corpus. They are resource-

demanding and provide relatively little or no improvement at a high cost.  

The task of word translation disambiguation was treated independently in [8, 12] either with a supervised 

classifier or with huge annotated monolingual corpora.  

As it was noted in various reviews [1, 13], supervised methods have achieved substantial results but they 

require very costly training corpora, which is normally tagged by human experts. The training corpora have 

become a bottleneck of this approach and since its results anyway do not reach a human-made gold standard 

[7], ultimately the attention of researches has been driven to unsupervised methods.   

There are two main directions in unsupervised methods: methods that use monolingual corpora and look for 

similarities in contexts or documents, as in context or document clustering, and methods that extract 

information from word aligned multilingual corpora also known as cross-lingual methods.   

Context clustering is an unsupervised approach to detection of similarities in contexts [16, 20]. Its results 

highly depend on parameters used for clustering.  This approach was applied to word sense discrimination 

[19], which is mere distinguishing between different senses.  

Diab and Resnik [6] use cross-lingual approach for unsupervised word sense tagging. The authors use a 

word-aligned French-English parallel corpus with a tagged part in English to tag its French part with 



corresponding senses. This approach is aimed to facilitate sense-tagging of other languages given a broadly 

sense-tagged corpus in English. Consequently, although the suggested method is unsupervised, it requires 

substantially tagged data.     

As follows from the above, the suitability of unsupervised approaches to word translation has not been 

explored.  Our hypothesis is that unsupervised context clustering along with word aligned parallel texts can 

serve for obtaining context characteristics that would allow correct selection of a translation candidate for a 

word in a context in unsupervised manner.  In this work we explore the suitability of context clustering for 

word translation disambiguation by comparing clustering results for various parameter combinations and 

evaluating them against known translation classes.  In particular, we explore several parameter combinations 

with values  that were found to be the best for the tasks of document and context clustering in [21, 24, 19, 11, 

15].  For evaluation of clustering results we use translation equivalents that were obtained from word aligned 

parallel corpus.     

The paper is organized as follows. In Section 2 we give a short overview of the parameters involved in 

context clustering. Section 3 describes experimental settings including context clustering software, dataset 

and the procedure for detection of dataset classes used for evaluation and interpretation. In Section 4 we 

demonstrate the obtained results and perform their analysis. Section 5 provides conclusion remarks and 

outlines future work in this direction.  

2 Context Clustering  

In the past decade the topic of unsupervised word sense discrimination, that is discrimination between 

different word usages in context, was actively investigated [1, 13].  The most known solution to this problem 

is clustering of contexts that contain a word in question, which is a particular application of document 

clustering [16, 20]. A great review of clustering as unsupervised classification of dataset elements into groups 

is provided in [9]. The clustering algorithms that are suitable for document clustering are described  and 

analyzed in [21] and implemented  first in CLUTO clustering toolkit [10], which receives an extension in 

SenseClusters [18].  

However,   results of context clustering highly depend on a variety of parameters: clustering algorithms, 

criterion functions for cluster detection, context representations, context similarity measures, and cluster 

stopping criteria.  

2.1 Features  

To perform a clustering one has to choose features that would represent each element of a dataset.   In the 

field of document and context clustering each element, i.e. a document or a context, can be represented as a 

vector in a feature space. For example, a document can be represented as a vector of term frequencies:  

dtf=(tf1, tf2, …, tfn), 

where tfi  is the freqгутсy  of a particular term i in a document and i through n are all terms from the entire 

document set. Naturally, a document cannot contain all terms. Therefore, many of the dimensions of a term 

vector will be equal to zero.  

Features are called unigrams, when only one-word terms are considered. Pairs of two consecutive words are 

called bigrams. Yet in this work we adopt the extension of bigram’s definition that is introduced in [17] and 

implemented in SenseClusters [18].   The extended definition states that bigrams are pairs of words that 

occur in a given order within some distance from each other. The distance is called window.  For example, 

for a window of size five there could be at most three intervening words between the first and the second 

word that make up a bigram. On contrast to the bigrams, unordered pairs of words within a given window are 

called co-occurrences. These three types of features are suitable as for “headless” contexts or documents 

when there is no target word, the senses of which one wants to discriminate, as well as for “headed” contexts 

that contain a marked word.  For the latter a feature called target co-occurrence is introduced. Target co-

occurrences are co-occurrences that include the marked word. 

Naturally, there are words such as auxiliary verbs, articles, conjunctions, etc., that are common for any 

context and, therefore, do not bring in any characteristic information. Such words are known as stopwords 

and are not considered as features.  



On the other hand, words that occur very seldom to be a solid basis for context grouping must be excluded 

from the feature list as well.  In SenseClusters frequency-cut parameter r serves as a threshold to exclude 

features that occur less than r times.        

2.2 Order of context representation  

First-order and second-order representations for short contexts are analyzed in [15]. The first-order 

representation represents a context as a vector only of those features that directly present in the context. The 

second-order representation also considers features that co-occur with the initial context features in other 

context. For example, if we have context 1 “computer mouse” and context 2 “wireless mouse”, “wireless” is 

a second-order feature for context 1 and “computer” is a second-order feature for context 2. Pedersen [15] 

shows the second-order representation to be better for short contexts since they contain fewer words than a 

document. Both representations are implemented in SenseClusters toolkit.  

2.3 Similarity measure 

To evaluate similarity between contexts, a similarity measure must be introduced on the selected feature 

representation. If elements are represented as feature vectors, such similarity measures as distance or cosine 

can be used. In document clustering similarity the most commonly used measure is the cosine:  

cosine( d1, d2 ) = (d1 • d2) / ||d1|| ||d2||. 

Hence, contexts can be either represented in a vector space, where a vector corresponds to each document, or 

a similarity matrix can be constructed based on pairwise similarities between contexts.    

2.4 Clustering criterion functions 

The task of clustering is optimization of a clustering criterion function, which is a function from similarity 

measure. Cluster criterion functions can be internal or external. Internal criterion functions take into account 

only elements of a particular cluster and do not consider elements from other clusters. On the contrast, 

external criterion functions focuses on (dis)similarity between clusters.  A review and comparison of criterion 

functions for partitional clustering is presented by [24]. The authors evaluate the performance of seven 

different criterion functions for the problem of document clustering.  They show that two of the seven 

criterion functions (I2 and H2) steadily provide good results with most of the clustering algorithms, while 

some of the rest give better results under specific conditions on element density in a cluster, e.g. UPGMA, 

which, strictly speaking, is rather a cluster similarity measure designed for agglomerative clustering.  

2.5 Clustering techniques 

A variety of clustering techniques and algorithms exists to determine the sequence of steps for grouping and 

further regrouping of elements. This variety can be classified into three groups: hierarchical clustering, 

partitional clustering, and hybrid.  

The most popular algorithm of the hierarchical clustering is agglomerative clustering, which first considers 

each element as a separate cluster and then groups them. Hierarchical clustering that works in the opposite 

direction is called divisive. The basic algorithm for the agglomerative clustering is: 

1. Compute the similarity between all pairs of clusters. 

2. Merge the most similar (closest) two clusters. 

3. Update pairwise similarities between the new cluster and the original clusters. 

4. Repeat steps 2 and 3 until only a single cluster remains. 

Patitional clustering divides a whole dataset into a given number N of clusters at once by randomly selecting 

N initial points as cluster centroids and then optimizes the clustering solution by reorganizing the elements. 

Hence, it does not have a hierarchy of clusters but rather a “flat” solution. Here we present the algorithm 

known as basic k-means clustering:  

1. Select K points as the initial centroids. 

2. Assign all points to the closest centroid. 

3. Recompute the centroid of each cluster. 

4. Repeat steps 2 and 3 until the centroids don’t change. 



A comparison of clustering techniques concerning document clustering is performed by Steinbach et al. [21]. 

As it follows from their research, the best clustering techniques for document clustering were bisecting k-

means among flat clustering techniques and refined agglomerative clustering with UPGMA similarity 

function among hierarchical techniques. They also showed that bisecting k-means technique performed 

better than refined agglomerative clustering with UPGMA.  

2.6 Cluster stopping measures 

However, the existing clustering techniques imply that a number of clusters is already known, which is not 

true in many cases, especially for document and context clustering. A solution for automatic cluster stopping 

was suggested in [11] along with four cluster stopping measures: gap, which is based on gap statistics, pk1, 

pk2, and pk3.   

2.7 Clustering evaluation 

Additionally, evaluation of context clustering results is not an easy task. There are many different quality 

measures and the performance ranking of a clustering algorithm depends substantially on which measure is 

used [21]. 

Two basic classes of clustering quality measures exist. Internal quality measures do not use any external 

knowledge and are based on similarity or dissimilarity functions used to form a clustering solution.  Hence, 

the result of such evaluation directly depends on the clustering function used and such evaluation is difficult 

to interpret for a set of contexts from the point of view on their information content. External quality 

measures compare clustering results to known classes of dataset elements. Here the problem is to obtain 

these classes.   

In Section 3 we describe how we obtain the classes for the dataset. Consequently, we use external quality 

measures of entropy and purity to evaluate the results.   

Given a particular cluster Sr of size nr, the entropy of this cluster is defined to be 

 

where q is the number of classes in the dataset, and ni
r is the number of elements of the ith class that were 

assigned to the r
th
 cluster. The resulting entropy is the weighted sum of all entropies:  

 

 

where k is a number of clusters and n is a number of all elements in the dataset. 

Entropy looks at how various classes of dataset elements are distributed between clusters obtained for the 

same dataset. In brief, the lower is the entropy, the better.   

The purity of a cluster is calculated as:  

 

It is the largest fraction of a cluster that is formed by the elements of the same class or in other words a 

fraction of the largest class in a cluster.  

The overall purity of a clustering solution is a weighted sum of purities of all individual clusters: 

 

The case when each cluster is formed by the elements of one class is the best and gives the highest purity.  



3 Experimental Settings  

Further we describe experimental settings used at the experiments.  

3.1 Clustering parameters 

In this work we perform context clustering with SenseClusters toolkit [18]. It is a complete and freely 

available context clustering system that provides support for feature selection from large corpora, several 

different context representation schemes, various clustering  algorithms, and evaluation of the discovered 

clusters.  

Parameters with fixed values We set values of several parameters to be unchangeable and regarded as 

“default” for our experiments: 

• the order of feature representation is set to -o2, which stands for the second order;  

• the context are represented as feature vectors in vector space;   

• window is set to 5;  

• frequency-cut parameter r is set to 3.  

We chose the second-order context representation since it is shown to be better for short contexts (Pedersen, 

2008).  

The vector space is preferred over the similarity matrix representation based on the work of Purandare and 

Pedersen [19]. They analyzed 6 combinations of 4 clustering parameters: order of context representation, 

features, vector space/similarity matrix, and clustering method. Purandare and Pedersen show that the best 

results were achieved for combinations with vector space.   

For the value of window parameter we took as a reference the work by Purandare [17], where this parameter 

was set to 5.  

The value of the frequency-cut parameter is chosen heuristically based on the assumption that for the size of 

our dataset, which contains 1449 contexts, a higher number might cut out significant features, whereas a 

lower number would be unreasonable.   

 Parameters with varied values In the experiment we varied several parameters: features for context 

representation, clustering methods, criterion functions and cluster stopping criteria. Since the total number of 

possible combinations is very high, we analyzed only among those parameter values that are proved to be the 

best for document and context clustering in [21, 24]. We also considered repeated bisections and refined 

repeated bisections methods since they are considered in works on context clustering [19, 20]. The 

parameters with their varied values are:   

• features for context representation: unigrams, bigrams, co-occurrences, target co-occurrences;   

• clustering methods: direct k-means, repeated bisection, refined repeated bisection, agglomerative; 

• criterion functions: I2 and H2 for partitional methods and UPGMA for the agglomerative method;   

• cluster stopping measures: gap, pk1, pk2, pk3. 

The total number of experiments is 112.  

3.2 Dataset 

We used sentence aligned English-Spanish Europarl parallel corpus from OPUS open corpus [22] to extract 

contexts for clustering and to detect translation equivalents.  

For our purpose of exploring context clustering suitability for word translation disambiguation, an 

ambiguous word had to satisfy the following criteria:  

• to have a number of instances in a chosen parallel corpus that would be sufficient for unsupervised 

clustering (we set it 1000); 

• to have more than one candidate translation in the parallel part of a corpus. 

We considered as candidates only those translations, the number of entries of which was at least 1-2% of the 

source word instance number.    

The analysis of the above criteria was performed using OPUS word alignment database. We have chosen 



several words that satisfy these criteria.  Due to time constraints, we present results only for the word 

“FACILITY”. 

As a context we used an extract of seven consecutive sentences from the corpus, a sentence with the chosen 

source word being the forth. At this step we extracted 1771 contexts for our dataset.  

The dataset was converted to lower-case and tokenized.  

To evaluate clustering results we needed to detect corresponding translations. First, we performed word 

alignment automatically with GIZA+ + [14]. Yet we obtained excessively many word-to-NULL alignments. 

It might be due to a relatively small size of the dataset corpus, which additionally contained nearly 20% of 

wrong sentence alignments.   

Therefore, we developed an alternative approach to detection of corresponding translations for a selected 

source word. A detailed description of the procedure and results are described in [25]. For ca. 600 entries of 

our dataset, pruned alignments were available from OPUS word alignment database. The rest was detected 

manually by comparing source word contexts with their corresponding parallel contexts.  

At this stage we detected 342 contexts (~ 20% of the dataset) that were wrongly sentence-aligned as the 

example in Table 1 shows:  

I hope that as soon as possible we will have the 

financial perspective and the Stability Instrument, 

which should, under normal circumstances, finance 

the Peace <head>Facility</head> and enable the 

problem to be resolved.  

Comparto, pues, este punto de vista. 

Table 1 

We deleted such contexts from our dataset.  

There were also cases when the word “facility” did not have a direct translation equivalent as in Table 2:   

… but the lack of financing and credit 

<head>facilities</head> 

… pero la falta de financiación y créditos. 

Table 2 

We tagged such cases as NOTAG since we wanted to detect whether unsupervised sense clustering would 

find something in common between contexts that are translated in this manner.   

Further, there were about 100 translations that had a very low frequency of 1 to 6 and could not be 

considered independent translation candidates. We performed manual grouping of them with their synonyms 

based on the contexts where they appeared.  There were 10 instances that we decided to mark as NOTAG 

since the translator's decision to choose a particular translation equivalent was not clear and easily deducted.  

In the end, we obtained a dataset of 1429 contexts with 21 translation classes including NOTAG.   The 

dataset along with a translation candidate key file and information on some intermediate steps can be found 

at www.gelbukh.com/resources/word-translation-alignments.  

According to monolingual dictionaries we consulted (Online Merriam-Webster, Oxford Concise Thesaurus, 

WordNet, and Larousse American Pocket), they distinguish between 4 and 5 senses for the word “facility” 

that can be described as:  

• installation, building;  

• service; 

• equipment; 

• possibility; 

• readiness.  

We took these numbers as guidance for the minimum number of clusters. Therefore, any combination of 

parameter values that gave fewer than 4 clusters was discarded from the comparison of parameter values.    

4 Experimental results  

The number of clusters that we obtained with various clustering parameter combinations varied from 1 to 6.  



Table 3 shows the frequencies of each number of clusters for a cluster stopping measure.  

cl. num. 1 2 3 4 5 6 

gap 24 0 4 0 0 0 

pk1 11 10 3 1 3 0 

pk2 0 8 10 3 4 3 

pk3 0 12 9 6 1 0 

Table 3 

As it follows from Table 3, cluster stopping measures gap and pk1 provide the lowest number of clusters. 

Gap statistic measure gives no results that would be higher than the threshold of 4 clusters. Pk1 measure 

gives acceptable results only in 4 cases, which is 3.5% of all cases.    

The fractions of experiments for each cluster number from the total number of experiments are shown in 

Table 4.  

cl. num. 1 2 3 4 5 6 

fraction, % 31.2 26.8 23.2 9.0 7.1 2.7 

Table 4 

Of the total number of experiments 50% were for cluster numbers 2 and 3, and only 18.8% (21 of a total of 

112 combinations) passed the threshold of 4 clusters.  

An assumption that the word “facility” may have only 2 to 3 “real” or well distinguishable senses does not 

seem to be probable. If we take a look at the list of generalized senses for “facility” in Section 3, they hardly 

can be grouped into a number of independent and non-intersecting senses less than four. And if we take into 

account that a lexical company of a word in context might vary even more than its semantic meaning, we 

would rather expect a larger number of clusters than a smaller one.  

Therefore, we interpret the steadily low number of clusters for cluster stopping criteria gap and pk1 as a 

quality of these criteria.  Pk2 and pk3 measures give acceptable results in 36% and 25% of their usage cases 

respectively.  

The parameter values, the entropy, and the purity for cases with the cluster number more than 4 are presented 

in Table 5.  

clmeth crfun clstop cl # E P clmeth crfun clstop cl # E P 

Co-occurrences Unigrams 

agglo  upgma pk2 6 80.6 25.5 agglo  upgma pk2 6 84.1 24.2 

direct h2  pk1 4 80.4 25.6 direct i2  pk2 6 74.8 26.9 

direct h2  pk3 4 80.4 25.6 rb h2  pk1 5 75.2 28.3 

direct i2  pk2 5 80.2 25.5 rb h2  pk2 4 76.2 27.6 

direct i2  pk3 4 80.4 25.6 rb h2  pk3 4 76.2 27.6 

rb h2  pk1 5 80.7 25.0 rb i2  pk2 5 75.6 27.8 

rb h2  pk2 4 81.0 25.0 rbr  h2  pk1 5 75.2 28.3 

rb h2  pk3 4 81.0 25.0 rbr  h2  pk2 4 76.2 27.6 

rb i2  pk3 5 80.7 25.0 rbr  h2  pk3 4 76.2 27.6 

rbr  h2  pk3 4 80.4 25.6 rbr  i2  pk2 5 75.3 28.3 

rbr  i2  pk2 5 80.2 25.5             

Table 5 

As one can observe, no combinations with bigrams that are two consecutive words or target co-occurrences 

that are co-occurrences with the target word “facility” passed the threshold. For parameter combinations 

containing these features the number of clusters was lower than 4. This fact might be explained that 

conditions imposed on these features are hard to satisfy: bigrams require repeated consecutiveness of a word 

pair and target co-occurrences require co-occurrence with a target word within a certain window. On the one 

hand, a larger window size for these features might bring in more significant features. On the other hand, a 



window of size more than 5 will introduce too much noise.  

Several parameter combinations with unigram and co-occurrence features passed the threshold. It can be 

observed from Table 5 that for partitional clustering techniques –direct k-means, repeated bisections and 

refined repeated bisections– variation of entropy and purity has some dependency on the number of clusters. 

For fixed number of clusters and context feature pairs of entropy and purity can be grouped into as few as 

one or two groups of equal values. For example, if we set a context feature to be co-occurrence and a number 

for clusters to be 4, in 4 of 6 cases (entropy; purity) = (80.4; 25.6) and in the rest of the cases (entropy; 

purity) = (81.0; 25.0). To detect the actual dependence further experiments are needed.  

The best entropy and purity values correspond to the parameter combinations with unigram features. In 

general, the entropy for unigrams is about 5% better than the entropy for co-occurrences and the purity is 

12% better for unigrams than for co-occurrences.  Yet comparison of these entropy and purity values to those 

obtained in [21, 24] is hindered by the dependence of entropy and purity on the number of classes.  

Our consideration is that the entropy and purity measures as they are described in Section 2.7 might be 

inappropriate for cluster evaluation in our task. These measures were intent to evaluate word sense 

discrimination results, when it is assumed that each cluster corresponds to a sense and it is expected (or 

manually set) that the number of clusters would be more or less the same as the number of senses. On the 

contrast, in our case it is completely acceptable if more than one class are clustered together, which 

corresponds to the case of synonymous translations, or if elements of one class are distributed between 

several clusters, which is the case of preserved homonymy.   

To check how cluster number will influence the entropy and purity, we performed an experiment with the 

number of clusters manually set to 21, which is the number of our translation classes. In this experiment we 

used a clustering parameter combination that gave the highest purity. The results are shown in Table 6.  

clmeth crfun clstop cl # E P 

Unigrams with fixed number of clusters 

rb h2 n/a 21 67.2 32.7 

Table 6 

As it can be seen, the more than 4 times increase of the cluster number from 5 to 21 improves the values of 

entropy and purity only 10.6% and 15.5 % respectively.   

5 Conclusions and future work   

In this work we perform comparison of various clustering parameter combinations and explored suitability of 

context clustering application to unsupervised word translation.  

The number of clusters more than the threshold of 4 occurred only for 18.8% of the experiments. Numbers of 

2 and 3 were detected in 50% of cases. Yet these results cannot be interpreted from the semantic point of 

view, therefore, they were discarded as it was initially intended. However, formal analysis of semantic 

similarity of senses through an ontology or semantic hierarchy can give new perspective on these numbers.  

We detected that cluster stopping measures gap and pk1 provide very low numbers of clusters that cannot be 

interpret from the semantic point of view. The numbers of clusters that correspond to the semantic 

assumption of the number of word senses can be achieved in most cases with pk2 and pk3 cluster stopping 

measure. Also pk1 cluster stopping measure should not be completely discarded since it provided 19% of all 

acceptable results.  

We were not able to detect acceptable results for bigram and target co-occurrence features. It might be 

explained by inappropriate window size and data sparseness that in our experiments was not handled through 

singular value decomposition. Hence, further experiments with singular value decomposition and varying 

window size are necessary.  

The evaluation of results through entropy and purity gives us the numbers that are not easily interpreted in 

the task of word translation when the number of classes is much higher than the number of clusters. Hence, 

we will work on development of different quality measure that would be more adequate for our goals.  
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